// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2014 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Chi-Squared distribution. /// This distribution is a sum of the squares of k independent standard normal random variables. /// Wikipedia - ChiSquare distribution. /// public class ChiSquared : IContinuousDistribution { System.Random _random; readonly double _freedom; /// /// Initializes a new instance of the class. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. public ChiSquared(double freedom) { if (!IsValidParameterSet(freedom)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _freedom = freedom; } /// /// Initializes a new instance of the class. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. /// The random number generator which is used to draw random samples. public ChiSquared(double freedom, System.Random randomSource) { if (!IsValidParameterSet(freedom)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _freedom = freedom; } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"ChiSquared(k = {_freedom})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. public static bool IsValidParameterSet(double freedom) { return freedom > 0.0; } /// /// Gets the degrees of freedom (k) of the Chi-Squared distribution. Range: k > 0. /// public double DegreesOfFreedom => _freedom; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the distribution. /// public double Mean => _freedom; /// /// Gets the variance of the distribution. /// public double Variance => 2.0*_freedom; /// /// Gets the standard deviation of the distribution. /// public double StdDev => Math.Sqrt(2.0*_freedom); /// /// Gets the entropy of the distribution. /// public double Entropy => (_freedom/2.0) + Math.Log(2.0*SpecialFunctions.Gamma(_freedom/2.0)) + ((1.0 - (_freedom/2.0))*SpecialFunctions.DiGamma(_freedom/2.0)); /// /// Gets the skewness of the distribution. /// public double Skewness => Math.Sqrt(8.0/_freedom); /// /// Gets the mode of the distribution. /// public double Mode => _freedom - 2.0; /// /// Gets the median of the distribution. /// public double Median => _freedom - (2.0/3.0); /// /// Gets the minimum of the distribution. /// public double Minimum => 0.0; /// /// Gets the maximum of the distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { return PDF(_freedom, x); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { return PDFLn(_freedom, x); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return CDF(_freedom, x); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// public double InverseCumulativeDistribution(double p) { return InvCDF(_freedom, p); } /// /// Generates a sample from the ChiSquare distribution. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, _freedom); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _freedom); } /// /// Generates a sequence of samples from the ChiSquare distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _freedom); } /// /// Samples the distribution. /// /// The random number generator to use. /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a random number from the distribution. static double SampleUnchecked(System.Random rnd, double freedom) { // Use the simple method if the degrees of freedom is an integer anyway if (Math.Floor(freedom) == freedom && freedom < int.MaxValue) { double sum = 0; var n = (int)freedom; for (var i = 0; i < n; i++) { sum += Math.Pow(Normal.Sample(rnd, 0.0, 1.0), 2); } return sum; } // Call the gamma function (see http://en.wikipedia.org/wiki/Gamma_distribution#Specializations // for a justification) return Gamma.SampleUnchecked(rnd, freedom/2.0, .5); } internal static void SamplesUnchecked(System.Random rnd, double[] values, double freedom) { // Use the simple method if the degrees of freedom is an integer anyway if (Math.Floor(freedom) == freedom && freedom < int.MaxValue) { var n = (int)freedom; var standard = new double[values.Length*n]; Normal.SamplesUnchecked(rnd, standard, 0.0, 1.0); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { int k = i*n; double sum = 0; for (int j = 0; j < n; j++) { sum += standard[k + j]*standard[k + j]; } values[i] = sum; } }); return; } // Call the gamma function (see http://en.wikipedia.org/wiki/Gamma_distribution#Specializations // for a justification) Gamma.SamplesUnchecked(rnd, values, freedom/2.0, .5); } static IEnumerable SamplesUnchecked(System.Random rnd, double freedom) { while (true) { yield return SampleUnchecked(rnd, freedom); } } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. /// The location at which to compute the density. /// the density at . /// public static double PDF(double freedom, double x) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (double.IsPositiveInfinity(freedom) || double.IsPositiveInfinity(x) || x == 0.0) { return 0.0; } if (freedom > 160.0) { return Math.Exp(PDFLn(freedom, x)); } return (Math.Pow(x, (freedom/2.0) - 1.0)*Math.Exp(-x/2.0))/(Math.Pow(2.0, freedom/2.0)*SpecialFunctions.Gamma(freedom/2.0)); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The degrees of freedom (k) of the distribution. Range: k > 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double freedom, double x) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (double.IsPositiveInfinity(freedom) || double.IsPositiveInfinity(x) || x == 0.0) { return double.NegativeInfinity; } return (-x/2.0) + (((freedom/2.0) - 1.0)*Math.Log(x)) - ((freedom/2.0)*Math.Log(2)) - SpecialFunctions.GammaLn(freedom/2.0); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The degrees of freedom (k) of the distribution. Range: k > 0. /// the cumulative distribution at location . /// public static double CDF(double freedom, double x) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (double.IsPositiveInfinity(x)) { return 1.0; } if (double.IsPositiveInfinity(freedom)) { return 1.0; } return SpecialFunctions.GammaLowerRegularized(freedom/2.0, x/2.0); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . public static double InvCDF(double freedom, double p) { if(!IsValidParameterSet(freedom)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SpecialFunctions.GammaLowerRegularizedInv(freedom / 2.0, p) / 0.5; } /// /// Generates a sample from the ChiSquare distribution. /// /// The random number generator to use. /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double freedom) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, freedom); } /// /// Generates a sequence of samples from the distribution. /// /// The random number generator to use. /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a sample from the distribution. public static IEnumerable Samples(System.Random rnd, double freedom) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, freedom); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a sample from the distribution. public static void Samples(System.Random rnd, double[] values, double freedom) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, freedom); } /// /// Generates a sample from the ChiSquare distribution. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a sample from the distribution. public static double Sample(double freedom) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, freedom); } /// /// Generates a sequence of samples from the distribution. /// /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a sample from the distribution. public static IEnumerable Samples(double freedom) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, freedom); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The degrees of freedom (k) of the distribution. Range: k > 0. /// a sample from the distribution. public static void Samples(double[] values, double freedom) { if (freedom <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, freedom); } } }