//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2019 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using IStation.Numerics.Random;
using IStation.Numerics.Statistics;
using System;
using System.Collections.Generic;
using System.Linq;
namespace IStation.Numerics.Distributions
{
public class InverseGaussian : IContinuousDistribution
{
System.Random _random;
///
/// Gets the mean (μ) of the distribution. Range: μ > 0.
///
public double Mu { get; }
///
/// Gets the shape (λ) of the distribution. Range: λ > 0.
///
public double Lambda { get; }
///
/// Initializes a new instance of the InverseGaussian class.
///
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// The random number generator which is used to draw random samples.
public InverseGaussian(double mu, double lambda, System.Random randomSource = null)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
Mu = mu;
Lambda = lambda;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"InverseGaussian(μ = {Mu}, λ = {Lambda})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
public static bool IsValidParameterSet(double mu, double lambda)
{
var allFinite = mu.IsFinite() && lambda.IsFinite();
return allFinite && mu > 0.0 && lambda > 0.0;
}
///
/// Gets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the Inverse Gaussian distribution.
///
public double Mean => Mu;
///
/// Gets the variance of the Inverse Gaussian distribution.
///
public double Variance => Math.Pow(Mu, 3) / Lambda;
///
/// Gets the standard deviation of the Inverse Gaussian distribution.
///
public double StdDev => Math.Sqrt(Variance);
///
/// Gets the median of the Inverse Gaussian distribution.
/// No closed form analytical expression exists, so this value is approximated numerically and can throw an exception.
///
public double Median => InvCDF(0.5);
///
/// Gets the minimum of the Inverse Gaussian distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the Inverse Gaussian distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Gets the skewness of the Inverse Gaussian distribution.
///
public double Skewness => 3 * Math.Sqrt(Mu / Lambda);
///
/// Gets the kurtosis of the Inverse Gaussian distribution.
///
public double Kurtosis => 15 * Mu / Lambda;
///
/// Gets the mode of the Inverse Gaussian distribution.
///
public double Mode => Mu * (Math.Sqrt(1 + (9 * Mu * Mu) / (4 * Lambda * Lambda)) - (3 * Mu) / (2 * Lambda));
///
/// Gets the entropy of the Inverse Gaussian distribution (currently not supported).
///
public double Entropy => throw new NotSupportedException();
///
/// Generates a sample from the inverse Gaussian distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, Mu, Lambda);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, Mu, Lambda);
}
///
/// Generates a sequence of samples from the inverse Gaussian distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, Mu, Lambda);
}
///
/// Generates a sample from the inverse Gaussian distribution.
///
/// The random number generator to use.
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double mu, double lambda)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, mu, lambda);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
public static void Samples(System.Random rnd, double[] values, double mu, double lambda)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, mu, lambda);
}
///
/// Generates a sequence of samples from the Burr distribution.
///
/// The random number generator to use.
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double mu, double lambda)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, mu, lambda);
}
internal static double SampleUnchecked(System.Random rnd, double mu, double lambda)
{
double v = IStation.Numerics.Distributions.Normal.Sample(rnd, 0, 1);
double test = rnd.NextDouble();
return InverseGaussianSampleImpl(mu, lambda, v, test);
}
internal static void SamplesUnchecked(System.Random rnd, double[] values, double mu, double lambda)
{
if (values.Length == 0)
{
return;
}
double[] v = new double[values.Length];
IStation.Numerics.Distributions.Normal.Samples(rnd, v, 0, 1);
double[] test = rnd.NextDoubles(values.Length);
for (var j = 0; j < values.Length; ++j)
{
values[j] = InverseGaussianSampleImpl(mu, lambda, v[j], test[j]);
}
}
internal static IEnumerable SamplesUnchecked(System.Random rnd, double mu, double lambda)
{
while (true)
{
yield return SampleUnchecked(rnd, mu, lambda);
}
}
internal static double InverseGaussianSampleImpl(double mu, double lambda, double normalSample, double uniformSample)
{
double y = normalSample * normalSample;
double x = mu + (mu * mu * y) / (2 * lambda) - (mu / (2 * lambda)) * Math.Sqrt(4 * mu * lambda * y + mu * mu * y * y);
if (uniformSample <= mu / (mu + x))
return x;
else
return mu * mu / x;
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return DensityImpl(Mu, Lambda, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return DensityLnImpl(Mu, Lambda, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return CumulativeDistributionImpl(Mu, Lambda, x);
}
///
/// Computes the inverse cumulative distribution (CDF) of the distribution at p, i.e. solving for P(X ≤ x) = p.
///
/// The location at which to compute the inverse cumulative distribution function.
/// the inverse cumulative distribution at location .
public double InvCDF(double p)
{
Func equationToSolve = (x) => CumulativeDistribution(x) - p;
if (RootFinding.NewtonRaphson.TryFindRoot(equationToSolve, Density, Mode, 0, double.PositiveInfinity, 1e-8, 100, out double quantile))
return quantile;
else
throw new NonConvergenceException("Numerical estimation of the statistic has failed. The used solver did not succeed in finding a root.");
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double mu, double lambda, double x)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return DensityImpl(mu, lambda, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// The location at which to compute the log density.
/// the log density at .
///
public static double PDFLn(double mu, double lambda, double x)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return DensityLnImpl(mu, lambda, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public static double CDF(double mu, double lambda, double x)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return CumulativeDistributionImpl(mu, lambda, x);
}
///
/// Computes the inverse cumulative distribution (CDF) of the distribution at p, i.e. solving for P(X ≤ x) = p.
///
/// The mean (μ) of the distribution. Range: μ > 0.
/// The shape (λ) of the distribution. Range: λ > 0.
/// The location at which to compute the inverse cumulative distribution function.
/// the inverse cumulative distribution at location .
///
public static double ICDF(double mu, double lambda, double p)
{
if (!IsValidParameterSet(mu, lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var igDist = new InverseGaussian(mu, lambda);
return igDist.InvCDF(p);
}
///
/// Estimates the Inverse Gaussian parameters from sample data with maximum-likelihood.
///
/// The samples to estimate the distribution parameters from.
/// The random number generator which is used to draw random samples. Optional, can be null.
/// An Inverse Gaussian distribution.
public static InverseGaussian Estimate(IEnumerable samples, System.Random randomSource = null)
{
var sampleVec = samples.ToArray();
var muHat = sampleVec.Mean();
var lambdahat = 1 / (1 / samples.HarmonicMean() - 1 / muHat);
return new InverseGaussian(muHat, lambdahat, randomSource);
}
internal static double DensityImpl(double mu, double lambda, double x)
{
return Math.Sqrt(lambda / (2 * Math.PI * Math.Pow(x, 3))) * Math.Exp(-((lambda * Math.Pow(x - mu, 2)) / (2 * mu * mu * x)));
}
internal static double DensityLnImpl(double mu, double lambda, double x)
{
return Math.Log(Math.Sqrt(lambda / (2 * Math.PI * Math.Pow(x, 3)))) - ((lambda * Math.Pow(x - mu, 2)) / (2 * mu * mu * x));
}
internal static double CumulativeDistributionImpl(double mu, double lambda, double x)
{
return Normal.CDF(0, 1, Math.Sqrt(lambda / x) * (x / mu - 1)) + Math.Exp(2 * lambda / mu) * Normal.CDF(0, 1, -Math.Sqrt(lambda / x) * (x / mu + 1));
}
}
}