//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.LinearAlgebra.Double;
using IStation.Numerics.Random;
namespace IStation.Numerics.Distributions
{
///
/// Multivariate Matrix-valued Normal distributions. The distribution
/// is parameterized by a mean matrix (M), a covariance matrix for the rows (V) and a covariance matrix
/// for the columns (K). If the dimension of M is d-by-m then V is d-by-d and K is m-by-m.
/// Wikipedia - MatrixNormal distribution.
///
public class MatrixNormal : IDistribution
{
System.Random _random;
///
/// The mean of the matrix normal distribution.
///
readonly Matrix _m;
///
/// The covariance matrix for the rows.
///
readonly Matrix _v;
///
/// The covariance matrix for the columns.
///
readonly Matrix _k;
///
/// Initializes a new instance of the class.
///
/// The mean of the matrix normal.
/// The covariance matrix for the rows.
/// The covariance matrix for the columns.
/// If the dimensions of the mean and two covariance matrices don't match.
public MatrixNormal(Matrix m, Matrix v, Matrix k)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_m = m;
_v = v;
_k = k;
}
///
/// Initializes a new instance of the class.
///
/// The mean of the matrix normal.
/// The covariance matrix for the rows.
/// The covariance matrix for the columns.
/// The random number generator which is used to draw random samples.
/// If the dimensions of the mean and two covariance matrices don't match.
public MatrixNormal(Matrix m, Matrix v, Matrix k, System.Random randomSource)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_m = m;
_v = v;
_k = k;
}
///
/// Returns a that represents this instance.
///
///
/// A that represents this instance.
///
public override string ToString()
{
return $"MatrixNormal(Rows = {_m.RowCount}, Columns = {_m.ColumnCount})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The mean of the matrix normal.
/// The covariance matrix for the rows.
/// The covariance matrix for the columns.
public static bool IsValidParameterSet(Matrix m, Matrix v, Matrix k)
{
var n = m.RowCount;
var p = m.ColumnCount;
if (v.ColumnCount != n || v.RowCount != n)
{
return false;
}
if (k.ColumnCount != p || k.RowCount != p)
{
return false;
}
for (var i = 0; i < v.RowCount; i++)
{
if (v.At(i, i) <= 0)
{
return false;
}
}
for (var i = 0; i < k.RowCount; i++)
{
if (k.At(i, i) <= 0)
{
return false;
}
}
return true;
}
///
/// Gets the mean. (M)
///
/// The mean of the distribution.
public Matrix Mean => _m;
///
/// Gets the row covariance. (V)
///
/// The row covariance.
public Matrix RowCovariance => _v;
///
/// Gets the column covariance. (K)
///
/// The column covariance.
public Matrix ColumnCovariance => _k;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Evaluates the probability density function for the matrix normal distribution.
///
/// The matrix at which to evaluate the density at.
/// the density at
/// If the argument does not have the correct dimensions.
public double Density(Matrix x)
{
if (x.RowCount != _m.RowCount || x.ColumnCount != _m.ColumnCount)
{
throw Matrix.DimensionsDontMatch(x, _m, "x");
}
var a = x - _m;
var cholV = _v.Cholesky();
var cholK = _k.Cholesky();
return Math.Exp(-0.5*cholK.Solve(a.Transpose()*cholV.Solve(a)).Trace())
/Math.Pow(2.0*Constants.Pi, x.RowCount*x.ColumnCount/2.0)
/Math.Pow(cholK.Determinant, x.RowCount/2.0)
/Math.Pow(cholV.Determinant, x.ColumnCount/2.0);
}
///
/// Samples a matrix normal distributed random variable.
///
/// A random number from this distribution.
public Matrix Sample()
{
return Sample(_random, _m, _v, _k);
}
///
/// Samples a matrix normal distributed random variable.
///
/// The random number generator to use.
/// The mean of the matrix normal.
/// The covariance matrix for the rows.
/// The covariance matrix for the columns.
/// If the dimensions of the mean and two covariance matrices don't match.
/// a sequence of samples from the distribution.
public static Matrix Sample(System.Random rnd, Matrix m, Matrix v, Matrix k)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var n = m.RowCount;
var p = m.ColumnCount;
// Compute the Kronecker product of V and K, this is the covariance matrix for the stacked matrix.
var vki = v.KroneckerProduct(k.Inverse());
// Sample a vector valued random variable with VKi as the covariance.
var vector = SampleVectorNormal(rnd, new DenseVector(n*p), vki);
// Unstack the vector v and add the mean.
var r = m.Clone();
for (var i = 0; i < n; i++)
{
for (var j = 0; j < p; j++)
{
r.At(i, j, r.At(i, j) + vector[(j*n) + i]);
}
}
return r;
}
///
/// Samples a vector normal distributed random variable.
///
/// The random number generator to use.
/// The mean of the vector normal distribution.
/// The covariance matrix of the vector normal distribution.
/// a sequence of samples from defined distribution.
static Vector SampleVectorNormal(System.Random rnd, Vector mean, Matrix covariance)
{
var chol = covariance.Cholesky();
// Sample a standard normal variable.
var v = Vector.Build.Random(mean.Count, new Normal(rnd));
// Return the transformed variable.
return mean + (chol.Factor*v);
}
}
}