//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using System.Linq;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.LinearAlgebra.Double;
using IStation.Numerics.Random;
using IStation.Numerics.Statistics;
namespace IStation.Numerics.Distributions
{
///
/// Multivariate Multinomial distribution. For details about this distribution, see
/// Wikipedia - Multinomial distribution.
///
///
/// The distribution is parameterized by a vector of ratios: in other words, the parameter
/// does not have to be normalized and sum to 1. The reason is that some vectors can't be exactly normalized
/// to sum to 1 in floating point representation.
///
public class Multinomial : IDistribution
{
System.Random _random;
///
/// Stores the normalized multinomial probabilities.
///
readonly double[] _p;
///
/// The number of trials.
///
readonly int _trials;
///
/// Initializes a new instance of the Multinomial class.
///
/// An array of nonnegative ratios: this array does not need to be normalized
/// as this is often impossible using floating point arithmetic.
/// The number of trials.
/// If any of the probabilities are negative or do not sum to one.
/// If is negative.
public Multinomial(double[] p, int n)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_p = (double[])p.Clone();
_trials = n;
}
///
/// Initializes a new instance of the Multinomial class.
///
/// An array of nonnegative ratios: this array does not need to be normalized
/// as this is often impossible using floating point arithmetic.
/// The number of trials.
/// The random number generator which is used to draw random samples.
/// If any of the probabilities are negative or do not sum to one.
/// If is negative.
public Multinomial(double[] p, int n, System.Random randomSource)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_p = (double[])p.Clone();
_trials = n;
}
///
/// Initializes a new instance of the Multinomial class from histogram . The distribution will
/// not be automatically updated when the histogram changes.
///
/// Histogram instance
/// The number of trials.
/// If any of the probabilities are negative or do not sum to one.
/// If is negative.
public Multinomial(Histogram h, int n)
{
if (h == null)
{
throw new ArgumentNullException(nameof(h));
}
// The probability distribution vector.
var p = new double[h.BucketCount];
// Fill in the distribution vector.
for (var i = 0; i < h.BucketCount; i++)
{
p[i] = h[i].Count;
}
if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_p = (double[])p.Clone();
_trials = n;
RandomSource = SystemRandomSource.Default;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"Multinomial(Dimension = {_p.Length}, Number of Trails = {_trials})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// An array of nonnegative ratios: this array does not need to be normalized
/// as this is often impossible using floating point arithmetic.
/// The number of trials.
/// If any of the probabilities are negative returns false,
/// if the sum of parameters is 0.0, or if the number of trials is negative; otherwise true.
public static bool IsValidParameterSet(IEnumerable p, int n)
{
var sum = 0.0;
foreach (var t in p)
{
if (t < 0.0 || double.IsNaN(t))
{
return false;
}
sum += t;
}
if (sum == 0.0)
{
return false;
}
return n >= 0;
}
///
/// Gets the proportion of ratios.
///
public double[] P => (double[])_p.Clone();
///
/// Gets the number of trials.
///
public int N => _trials;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the distribution.
///
public Vector Mean => _trials*(DenseVector)P;
///
/// Gets the variance of the distribution.
///
public Vector Variance
{
get
{
// Do not use _p, because operations below will modify _p array. Use P or _p.Clone().
var res = (DenseVector)P;
for (var i = 0; i < res.Count; i++)
{
res[i] *= _trials*(1 - res[i]);
}
return res;
}
}
///
/// Gets the skewness of the distribution.
///
public Vector Skewness
{
get
{
// Do not use _p, because operations below will modify _p array. Use P or _p.Clone().
var res = (DenseVector)P;
for (var i = 0; i < res.Count; i++)
{
res[i] = (1.0 - (2.0*res[i]))/Math.Sqrt(_trials*(1.0 - res[i])*res[i]);
}
return res;
}
}
///
/// Computes values of the probability mass function.
///
/// Non-negative integers x1, ..., xk
/// The probability mass at location .
/// When is null.
/// When length of is not equal to event probabilities count.
public double Probability(int[] x)
{
if (null == x)
{
throw new ArgumentNullException(nameof(x));
}
if (x.Length != _p.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.", nameof(x));
}
if (x.Sum() == _trials)
{
var coef = SpecialFunctions.Multinomial(_trials, x);
var num = 1.0;
for (var i = 0; i < x.Length; i++)
{
num *= Math.Pow(_p[i], x[i]);
}
return coef*num;
}
return 0.0;
}
///
/// Computes values of the log probability mass function.
///
/// Non-negative integers x1, ..., xk
/// The log probability mass at location .
/// When is null.
/// When length of is not equal to event probabilities count.
public double ProbabilityLn(int[] x)
{
if (null == x)
{
throw new ArgumentNullException(nameof(x));
}
if (x.Length != _p.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.", nameof(x));
}
if (x.Sum() == _trials)
{
var coef = Math.Log(SpecialFunctions.Multinomial(_trials, x));
var num = x.Select((t, i) => t*Math.Log(_p[i])).Sum();
return coef + num;
}
return 0.0;
}
///
/// Samples one multinomial distributed random variable.
///
/// the counts for each of the different possible values.
public int[] Sample()
{
return Sample(_random, _p, _trials);
}
///
/// Samples a sequence multinomially distributed random variables.
///
/// a sequence of counts for each of the different possible values.
public IEnumerable Samples()
{
while (true)
{
yield return Sample(_random, _p, _trials);
}
}
///
/// Samples one multinomial distributed random variable.
///
/// The random number generator to use.
/// An array of nonnegative ratios: this array does not need to be normalized
/// as this is often impossible using floating point arithmetic.
/// The number of trials.
/// the counts for each of the different possible values.
public static int[] Sample(System.Random rnd, double[] p, int n)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// The cumulative density of p.
var cp = Categorical.ProbabilityMassToCumulativeDistribution(p);
// The variable that stores the counts.
var ret = new int[p.Length];
for (var i = 0; i < n; i++)
{
ret[Categorical.SampleUnchecked(rnd, cp)]++;
}
return ret;
}
///
/// Samples a multinomially distributed random variable.
///
/// The random number generator to use.
/// An array of nonnegative ratios: this array does not need to be normalized
/// as this is often impossible using floating point arithmetic.
/// The number of variables needed.
/// a sequence of counts for each of the different possible values.
public static IEnumerable Samples(System.Random rnd, double[] p, int n)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(p, n))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// The cumulative density of p.
var cp = Categorical.ProbabilityMassToCumulativeDistribution(p);
while (true)
{
// The variable that stores the counts.
var ret = new int[p.Length];
for (var i = 0; i < n; i++)
{
ret[Categorical.SampleUnchecked(rnd, cp)]++;
}
yield return ret;
}
}
}
}