// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Stable distribution. /// A random variable is said to be stable (or to have a stable distribution) if it has /// the property that a linear combination of two independent copies of the variable has /// the same distribution, up to location and scale parameters. /// For details about this distribution, see /// Wikipedia - Stable distribution. /// public class Stable : IContinuousDistribution { System.Random _random; readonly double _alpha; readonly double _beta; readonly double _scale; readonly double _location; /// /// Initializes a new instance of the class. /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. public Stable(double alpha, double beta, double scale, double location) { if (!IsValidParameterSet(alpha, beta, scale, location)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _alpha = alpha; _beta = beta; _scale = scale; _location = location; } /// /// Initializes a new instance of the class. /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// The random number generator which is used to draw random samples. public Stable(double alpha, double beta, double scale, double location, System.Random randomSource) { if (!IsValidParameterSet(alpha, beta, scale, location)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _alpha = alpha; _beta = beta; _scale = scale; _location = location; } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"Stable(α = {_alpha}, β = {_beta}, c = {_scale}, μ = {_location})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. public static bool IsValidParameterSet(double alpha, double beta, double scale, double location) { return alpha > 0.0 && alpha <= 2.0 && beta >= -1.0 && beta <= 1.0 && scale > 0.0 && !double.IsNaN(location); } /// /// Gets the stability (α) of the distribution. Range: 2 ≥ α > 0. /// public double Alpha => _alpha; /// /// Gets The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// public double Beta => _beta; /// /// Gets the scale (c) of the distribution. Range: c > 0. /// public double Scale => _scale; /// /// Gets the location (μ) of the distribution. /// public double Location => _location; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the distribution. /// public double Mean { get { if (_alpha <= 1d) { throw new NotSupportedException(); } return _location; } } /// /// Gets the variance of the distribution. /// public double Variance { get { if (_alpha == 2d) { return 2.0*_scale*_scale; } return double.PositiveInfinity; } } /// /// Gets the standard deviation of the distribution. /// public double StdDev { get { if (_alpha == 2d) { return Constants.Sqrt2*_scale; } return double.PositiveInfinity; } } /// /// Gets he entropy of the distribution. /// /// Always throws a not supported exception. public double Entropy => throw new NotSupportedException(); /// /// Gets the skewness of the distribution. /// /// Throws a not supported exception of Alpha != 2. public double Skewness { get { if (_alpha != 2d) { throw new NotSupportedException(); } return 0.0; } } /// /// Gets the mode of the distribution. /// /// Throws a not supported exception if Beta != 0. public double Mode { get { if (_beta != 0d) { throw new NotSupportedException(); } return _location; } } /// /// Gets the median of the distribution. /// /// Throws a not supported exception if Beta != 0. public double Median { get { if (_beta != 0) { throw new NotSupportedException(); } return _location; } } /// /// Gets the minimum of the distribution. /// public double Minimum { get { if (Math.Abs(_beta) == 1) { return 0.0; } return double.NegativeInfinity; } } /// /// Gets the maximum of the distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . public double Density(double x) { return PDF(_alpha, _beta, _scale, _location, x); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . public double DensityLn(double x) { return PDFLn(_alpha, _beta, _scale, _location, x); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// Throws a not supported exception if Alpha != 2, (Alpha != 1 and Beta !=0), or (Alpha != 0.5 and Beta != 1) public double CumulativeDistribution(double x) { return CDF(_alpha, _beta, _scale, _location, x); } /// /// Samples the distribution. /// /// The random number generator to use. /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a random number from the distribution. static double SampleUnchecked(System.Random rnd, double alpha, double beta, double scale, double location) { var randTheta = ContinuousUniform.Sample(rnd, -Constants.PiOver2, Constants.PiOver2); var randW = Exponential.Sample(rnd, 1.0); if (!1.0.AlmostEqual(alpha)) { var theta = (1.0/alpha)*Math.Atan(beta*Math.Tan(Constants.PiOver2*alpha)); var angle = alpha*(randTheta + theta); var part1 = beta*Math.Tan(Constants.PiOver2*alpha); var factor = Math.Pow(1.0 + (part1*part1), 1.0/(2.0*alpha)); var factor1 = Math.Sin(angle)/Math.Pow(Math.Cos(randTheta), 1.0/alpha); var factor2 = Math.Pow(Math.Cos(randTheta - angle)/randW, (1 - alpha)/alpha); return location + scale*(factor*factor1*factor2); } else { var part1 = Constants.PiOver2 + (beta*randTheta); var summand = part1*Math.Tan(randTheta); var subtrahend = beta*Math.Log(Constants.PiOver2*randW*Math.Cos(randTheta)/part1); return location + scale*Constants.TwoInvPi*(summand - subtrahend); } } static void SamplesUnchecked(System.Random rnd, double[] values, double alpha, double beta, double scale, double location) { var randThetas = new double[values.Length]; var randWs = new double[values.Length]; ContinuousUniform.SamplesUnchecked(rnd, randThetas, -Constants.PiOver2, Constants.PiOver2); Exponential.SamplesUnchecked(rnd, randWs, 1.0); if (!1.0.AlmostEqual(alpha)) { for (int i = 0; i < values.Length; i++) { var randTheta = randThetas[i]; var theta = (1.0/alpha)*Math.Atan(beta*Math.Tan(Constants.PiOver2*alpha)); var angle = alpha*(randTheta + theta); var part1 = beta*Math.Tan(Constants.PiOver2*alpha); var factor = Math.Pow(1.0 + (part1*part1), 1.0/(2.0*alpha)); var factor1 = Math.Sin(angle)/Math.Pow(Math.Cos(randTheta), 1.0/alpha); var factor2 = Math.Pow(Math.Cos(randTheta - angle)/randWs[i], (1 - alpha)/alpha); values[i] = location + scale*(factor*factor1*factor2); } } else { for (int i = 0; i < values.Length; i++) { var randTheta = randThetas[i]; var part1 = Constants.PiOver2 + (beta*randTheta); var summand = part1*Math.Tan(randTheta); var subtrahend = beta*Math.Log(Constants.PiOver2*randWs[i]*Math.Cos(randTheta)/part1); values[i] = location + scale*Constants.TwoInvPi*(summand - subtrahend); } } } static IEnumerable SamplesUnchecked(System.Random rnd, double alpha, double beta, double scale, double location) { while (true) { yield return SampleUnchecked(rnd, alpha, beta, scale, location); } } /// /// Draws a random sample from the distribution. /// /// A random number from this distribution. public double Sample() { return SampleUnchecked(_random, _alpha, _beta, _scale, _location); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _alpha, _beta, _scale, _location); } /// /// Generates a sequence of samples from the Stable distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _alpha, _beta, _scale, _location); } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// The location at which to compute the density. /// the density at . /// public static double PDF(double alpha, double beta, double scale, double location, double x) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (alpha == 2d) { return Normal.PDF(location, Constants.Sqrt2*scale, x); } if (alpha == 1d && beta == 0d) { return Cauchy.PDF(location, scale, x); } if (alpha == 0.5d && beta == 1d && x >= location) { return (Math.Sqrt(scale/Constants.Pi2)*Math.Exp(-scale/(2*(x - location))))/Math.Pow(x - location, 1.5); } throw new NotSupportedException(); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double alpha, double beta, double scale, double location, double x) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (alpha == 2d) { return Normal.PDFLn(location, Constants.Sqrt2*scale, x); } if (alpha == 1d && beta == 0d) { return Cauchy.PDFLn(location, scale, x); } if (alpha == 0.5d && beta == 1d && x >= location) { return Math.Log(scale/Constants.Pi2)/2 - scale/(2*(x - location)) - 1.5*Math.Log(x - location); } throw new NotSupportedException(); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// the cumulative distribution at location . /// public static double CDF(double alpha, double beta, double scale, double location, double x) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (alpha == 2d) { return Normal.CDF(location, Constants.Sqrt2*scale, x); } if (alpha == 1d && beta == 0d) { return Cauchy.CDF(location, scale, x); } if (alpha == 0.5d && beta == 1d) { return SpecialFunctions.Erfc(Math.Sqrt(scale/(2*(x - location)))); } throw new NotSupportedException(); } /// /// Generates a sample from the distribution. /// /// The random number generator to use. /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a sample from the distribution. public static double Sample(System.Random rnd, double alpha, double beta, double scale, double location) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, alpha, beta, scale, location); } /// /// Generates a sequence of samples from the distribution. /// /// The random number generator to use. /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double alpha, double beta, double scale, double location) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, alpha, beta, scale, location); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double alpha, double beta, double scale, double location) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, alpha, beta, scale, location); } /// /// Generates a sample from the distribution. /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a sample from the distribution. public static double Sample(double alpha, double beta, double scale, double location) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, alpha, beta, scale, location); } /// /// Generates a sequence of samples from the distribution. /// /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a sequence of samples from the distribution. public static IEnumerable Samples(double alpha, double beta, double scale, double location) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, alpha, beta, scale, location); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The stability (α) of the distribution. Range: 2 ≥ α > 0. /// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1. /// The scale (c) of the distribution. Range: c > 0. /// The location (μ) of the distribution. /// a sequence of samples from the distribution. public static void Samples(double[] values, double alpha, double beta, double scale, double location) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, alpha, beta, scale, location); } } }