//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Stable distribution.
/// A random variable is said to be stable (or to have a stable distribution) if it has
/// the property that a linear combination of two independent copies of the variable has
/// the same distribution, up to location and scale parameters.
/// For details about this distribution, see
/// Wikipedia - Stable distribution.
///
public class Stable : IContinuousDistribution
{
System.Random _random;
readonly double _alpha;
readonly double _beta;
readonly double _scale;
readonly double _location;
///
/// Initializes a new instance of the class.
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
public Stable(double alpha, double beta, double scale, double location)
{
if (!IsValidParameterSet(alpha, beta, scale, location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_alpha = alpha;
_beta = beta;
_scale = scale;
_location = location;
}
///
/// Initializes a new instance of the class.
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// The random number generator which is used to draw random samples.
public Stable(double alpha, double beta, double scale, double location, System.Random randomSource)
{
if (!IsValidParameterSet(alpha, beta, scale, location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_alpha = alpha;
_beta = beta;
_scale = scale;
_location = location;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"Stable(α = {_alpha}, β = {_beta}, c = {_scale}, μ = {_location})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
public static bool IsValidParameterSet(double alpha, double beta, double scale, double location)
{
return alpha > 0.0 && alpha <= 2.0 && beta >= -1.0 && beta <= 1.0 && scale > 0.0 && !double.IsNaN(location);
}
///
/// Gets the stability (α) of the distribution. Range: 2 ≥ α > 0.
///
public double Alpha => _alpha;
///
/// Gets The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
///
public double Beta => _beta;
///
/// Gets the scale (c) of the distribution. Range: c > 0.
///
public double Scale => _scale;
///
/// Gets the location (μ) of the distribution.
///
public double Location => _location;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the distribution.
///
public double Mean
{
get
{
if (_alpha <= 1d)
{
throw new NotSupportedException();
}
return _location;
}
}
///
/// Gets the variance of the distribution.
///
public double Variance
{
get
{
if (_alpha == 2d)
{
return 2.0*_scale*_scale;
}
return double.PositiveInfinity;
}
}
///
/// Gets the standard deviation of the distribution.
///
public double StdDev
{
get
{
if (_alpha == 2d)
{
return Constants.Sqrt2*_scale;
}
return double.PositiveInfinity;
}
}
///
/// Gets he entropy of the distribution.
///
/// Always throws a not supported exception.
public double Entropy => throw new NotSupportedException();
///
/// Gets the skewness of the distribution.
///
/// Throws a not supported exception of Alpha != 2.
public double Skewness
{
get
{
if (_alpha != 2d)
{
throw new NotSupportedException();
}
return 0.0;
}
}
///
/// Gets the mode of the distribution.
///
/// Throws a not supported exception if Beta != 0.
public double Mode
{
get
{
if (_beta != 0d)
{
throw new NotSupportedException();
}
return _location;
}
}
///
/// Gets the median of the distribution.
///
/// Throws a not supported exception if Beta != 0.
public double Median
{
get
{
if (_beta != 0)
{
throw new NotSupportedException();
}
return _location;
}
}
///
/// Gets the minimum of the distribution.
///
public double Minimum
{
get
{
if (Math.Abs(_beta) == 1)
{
return 0.0;
}
return double.NegativeInfinity;
}
}
///
/// Gets the maximum of the distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
public double Density(double x)
{
return PDF(_alpha, _beta, _scale, _location, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
public double DensityLn(double x)
{
return PDFLn(_alpha, _beta, _scale, _location, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
/// Throws a not supported exception if Alpha != 2, (Alpha != 1 and Beta !=0), or (Alpha != 0.5 and Beta != 1)
public double CumulativeDistribution(double x)
{
return CDF(_alpha, _beta, _scale, _location, x);
}
///
/// Samples the distribution.
///
/// The random number generator to use.
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a random number from the distribution.
static double SampleUnchecked(System.Random rnd, double alpha, double beta, double scale, double location)
{
var randTheta = ContinuousUniform.Sample(rnd, -Constants.PiOver2, Constants.PiOver2);
var randW = Exponential.Sample(rnd, 1.0);
if (!1.0.AlmostEqual(alpha))
{
var theta = (1.0/alpha)*Math.Atan(beta*Math.Tan(Constants.PiOver2*alpha));
var angle = alpha*(randTheta + theta);
var part1 = beta*Math.Tan(Constants.PiOver2*alpha);
var factor = Math.Pow(1.0 + (part1*part1), 1.0/(2.0*alpha));
var factor1 = Math.Sin(angle)/Math.Pow(Math.Cos(randTheta), 1.0/alpha);
var factor2 = Math.Pow(Math.Cos(randTheta - angle)/randW, (1 - alpha)/alpha);
return location + scale*(factor*factor1*factor2);
}
else
{
var part1 = Constants.PiOver2 + (beta*randTheta);
var summand = part1*Math.Tan(randTheta);
var subtrahend = beta*Math.Log(Constants.PiOver2*randW*Math.Cos(randTheta)/part1);
return location + scale*Constants.TwoInvPi*(summand - subtrahend);
}
}
static void SamplesUnchecked(System.Random rnd, double[] values, double alpha, double beta, double scale, double location)
{
var randThetas = new double[values.Length];
var randWs = new double[values.Length];
ContinuousUniform.SamplesUnchecked(rnd, randThetas, -Constants.PiOver2, Constants.PiOver2);
Exponential.SamplesUnchecked(rnd, randWs, 1.0);
if (!1.0.AlmostEqual(alpha))
{
for (int i = 0; i < values.Length; i++)
{
var randTheta = randThetas[i];
var theta = (1.0/alpha)*Math.Atan(beta*Math.Tan(Constants.PiOver2*alpha));
var angle = alpha*(randTheta + theta);
var part1 = beta*Math.Tan(Constants.PiOver2*alpha);
var factor = Math.Pow(1.0 + (part1*part1), 1.0/(2.0*alpha));
var factor1 = Math.Sin(angle)/Math.Pow(Math.Cos(randTheta), 1.0/alpha);
var factor2 = Math.Pow(Math.Cos(randTheta - angle)/randWs[i], (1 - alpha)/alpha);
values[i] = location + scale*(factor*factor1*factor2);
}
}
else
{
for (int i = 0; i < values.Length; i++)
{
var randTheta = randThetas[i];
var part1 = Constants.PiOver2 + (beta*randTheta);
var summand = part1*Math.Tan(randTheta);
var subtrahend = beta*Math.Log(Constants.PiOver2*randWs[i]*Math.Cos(randTheta)/part1);
values[i] = location + scale*Constants.TwoInvPi*(summand - subtrahend);
}
}
}
static IEnumerable SamplesUnchecked(System.Random rnd, double alpha, double beta, double scale, double location)
{
while (true)
{
yield return SampleUnchecked(rnd, alpha, beta, scale, location);
}
}
///
/// Draws a random sample from the distribution.
///
/// A random number from this distribution.
public double Sample()
{
return SampleUnchecked(_random, _alpha, _beta, _scale, _location);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _alpha, _beta, _scale, _location);
}
///
/// Generates a sequence of samples from the Stable distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _alpha, _beta, _scale, _location);
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double alpha, double beta, double scale, double location, double x)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (alpha == 2d)
{
return Normal.PDF(location, Constants.Sqrt2*scale, x);
}
if (alpha == 1d && beta == 0d)
{
return Cauchy.PDF(location, scale, x);
}
if (alpha == 0.5d && beta == 1d && x >= location)
{
return (Math.Sqrt(scale/Constants.Pi2)*Math.Exp(-scale/(2*(x - location))))/Math.Pow(x - location, 1.5);
}
throw new NotSupportedException();
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double alpha, double beta, double scale, double location, double x)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (alpha == 2d)
{
return Normal.PDFLn(location, Constants.Sqrt2*scale, x);
}
if (alpha == 1d && beta == 0d)
{
return Cauchy.PDFLn(location, scale, x);
}
if (alpha == 0.5d && beta == 1d && x >= location)
{
return Math.Log(scale/Constants.Pi2)/2 - scale/(2*(x - location)) - 1.5*Math.Log(x - location);
}
throw new NotSupportedException();
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// the cumulative distribution at location .
///
public static double CDF(double alpha, double beta, double scale, double location, double x)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (alpha == 2d)
{
return Normal.CDF(location, Constants.Sqrt2*scale, x);
}
if (alpha == 1d && beta == 0d)
{
return Cauchy.CDF(location, scale, x);
}
if (alpha == 0.5d && beta == 1d)
{
return SpecialFunctions.Erfc(Math.Sqrt(scale/(2*(x - location))));
}
throw new NotSupportedException();
}
///
/// Generates a sample from the distribution.
///
/// The random number generator to use.
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double alpha, double beta, double scale, double location)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, alpha, beta, scale, location);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The random number generator to use.
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double alpha, double beta, double scale, double location)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, alpha, beta, scale, location);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double alpha, double beta, double scale, double location)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, alpha, beta, scale, location);
}
///
/// Generates a sample from the distribution.
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a sample from the distribution.
public static double Sample(double alpha, double beta, double scale, double location)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, alpha, beta, scale, location);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double alpha, double beta, double scale, double location)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, alpha, beta, scale, location);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The stability (α) of the distribution. Range: 2 ≥ α > 0.
/// The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.
/// The scale (c) of the distribution. Range: c > 0.
/// The location (μ) of the distribution.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double alpha, double beta, double scale, double location)
{
if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, alpha, beta, scale, location);
}
}
}