// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using System.Linq; using IStation.Numerics.Random; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Weibull distribution. /// For details about this distribution, see /// Wikipedia - Weibull distribution. /// /// /// The Weibull distribution is parametrized by a shape and scale parameter. /// public class Weibull : IContinuousDistribution { System.Random _random; readonly double _shape; readonly double _scale; /// /// Reusable intermediate result 1 / (_scale ^ _shape) /// /// /// By caching this parameter we can get slightly better numerics precision /// in certain constellations without any additional computations. /// readonly double _scalePowShapeInv; /// /// Initializes a new instance of the Weibull class. /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. public Weibull(double shape, double scale) { if (!IsValidParameterSet(shape, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _shape = shape; _scale = scale; _scalePowShapeInv = Math.Pow(scale, -shape); } /// /// Initializes a new instance of the Weibull class. /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// The random number generator which is used to draw random samples. public Weibull(double shape, double scale, System.Random randomSource) { if (!IsValidParameterSet(shape, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _shape = shape; _scale = scale; _scalePowShapeInv = Math.Pow(scale, -shape); } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"Weibull(k = {_shape}, λ = {_scale})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. public static bool IsValidParameterSet(double shape, double scale) { return shape > 0.0 && scale > 0.0; } /// /// Gets the shape (k) of the Weibull distribution. Range: k > 0. /// public double Shape => _shape; /// /// Gets the scale (λ) of the Weibull distribution. Range: λ > 0. /// public double Scale => _scale; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the Weibull distribution. /// public double Mean => _scale*SpecialFunctions.Gamma(1.0 + (1.0/_shape)); /// /// Gets the variance of the Weibull distribution. /// public double Variance => (_scale*_scale*SpecialFunctions.Gamma(1.0 + (2.0/_shape))) - (Mean*Mean); /// /// Gets the standard deviation of the Weibull distribution. /// public double StdDev => Math.Sqrt(Variance); /// /// Gets the entropy of the Weibull distribution. /// public double Entropy => (Constants.EulerMascheroni*(1.0 - (1.0/_shape))) + Math.Log(_scale/_shape) + 1.0; /// /// Gets the skewness of the Weibull distribution. /// public double Skewness { get { double mu = Mean; double sigma = StdDev; double sigma2 = sigma*sigma; double sigma3 = sigma2*sigma; return ((_scale*_scale*_scale*SpecialFunctions.Gamma(1.0 + (3.0/_shape))) - (3.0*sigma2*mu) - (mu*mu*mu))/sigma3; } } /// /// Gets the mode of the Weibull distribution. /// public double Mode { get { if (_shape <= 1.0) { return 0.0; } return _scale*Math.Pow((_shape - 1.0)/_shape, 1.0/_shape); } } /// /// Gets the median of the Weibull distribution. /// public double Median => _scale*Math.Pow(Constants.Ln2, 1.0/_shape); /// /// Gets the minimum of the Weibull distribution. /// public double Minimum => 0.0; /// /// Gets the maximum of the Weibull distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . public double Density(double x) { if (x >= 0.0) { if (x == 0.0 && _shape == 1.0) { return _shape/_scale; } return _shape*Math.Pow(x/_scale, _shape - 1.0)*Math.Exp(-Math.Pow(x, _shape)*_scalePowShapeInv)/_scale; } return 0.0; } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . public double DensityLn(double x) { if (x >= 0.0) { if (x == 0.0 && _shape == 1.0) { return Math.Log(_shape) - Math.Log(_scale); } return Math.Log(_shape) + ((_shape - 1.0)*Math.Log(x/_scale)) - (Math.Pow(x, _shape)*_scalePowShapeInv) - Math.Log(_scale); } return double.NegativeInfinity; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . public double CumulativeDistribution(double x) { if (x < 0.0) { return 0.0; } return -SpecialFunctions.ExponentialMinusOne(-Math.Pow(x, _shape)*_scalePowShapeInv); } /// /// Generates a sample from the Weibull distribution. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, _shape, _scale); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _shape, _scale); } /// /// Generates a sequence of samples from the Weibull distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _shape, _scale); } static double SampleUnchecked(System.Random rnd, double shape, double scale) { var x = rnd.NextDouble(); return scale*Math.Pow(-Math.Log(x), 1.0/shape); } static IEnumerable SamplesUnchecked(System.Random rnd, double shape, double scale) { var exponent = 1.0/shape; return rnd.NextDoubleSequence().Select(x => scale*Math.Pow(-Math.Log(x), exponent)); } static void SamplesUnchecked(System.Random rnd, double[] values, double shape, double scale) { var exponent = 1.0/shape; rnd.NextDoubles(values); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { values[i] = scale*Math.Pow(-Math.Log(values[i]), exponent); } }); } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// The location at which to compute the density. /// the density at . /// public static double PDF(double shape, double scale, double x) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x >= 0.0) { if (x == 0.0 && shape == 1.0) { return shape/scale; } return shape *Math.Pow(x/scale, shape - 1.0) *Math.Exp(-Math.Pow(x, shape)*Math.Pow(scale, -shape)) /scale; } return 0.0; } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double shape, double scale, double x) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x >= 0.0) { if (x == 0.0 && shape == 1.0) { return Math.Log(shape) - Math.Log(scale); } return Math.Log(shape) + ((shape - 1.0)*Math.Log(x/scale)) - (Math.Pow(x, shape)*Math.Pow(scale, -shape)) - Math.Log(scale); } return double.NegativeInfinity; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// the cumulative distribution at location . /// public static double CDF(double shape, double scale, double x) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x < 0.0) { return 0.0; } return -SpecialFunctions.ExponentialMinusOne(-Math.Pow(x, shape)*Math.Pow(scale, -shape)); } /// /// Implemented according to: Parameter estimation of the Weibull probability distribution, 1994, Hongzhu Qiao, Chris P. Tsokos /// /// /// /// Returns a Weibull distribution. public static Weibull Estimate(IEnumerable samples, System.Random randomSource = null) { var samp = samples as double[] ?? samples.ToArray(); double n = samp.Length, s1 = 0, s2 = 0, s3 = 0, previousC = Int32.MinValue, QofC = 0; if (n <= 1) throw new Exception("Observations not sufficient"); // Start values double c = 10; double b = 0; while (Math.Abs(c - previousC) >= 0.0001) { s1 = s2 = s3 = 0; foreach (double x in samp) { if (x > 0) { s1 += Math.Log(x); s2 += Math.Pow(x, c); s3 += Math.Pow(x, c) * Math.Log(x); } } QofC = n * s2 / (n * s3 - s1 * s2); previousC = c; c = (c + QofC) / 2; } foreach (double x in samp) { if (x > 0) { b += Math.Pow(x, c); } } b = Math.Pow(b / n, 1 / c); return new Weibull(c, b, randomSource); } /// /// Generates a sample from the Weibull distribution. /// /// The random number generator to use. /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double shape, double scale) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, shape, scale); } /// /// Generates a sequence of samples from the Weibull distribution. /// /// The random number generator to use. /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double shape, double scale) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, shape, scale); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double shape, double scale) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, shape, scale); } /// /// Generates a sample from the Weibull distribution. /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// a sample from the distribution. public static double Sample(double shape, double scale) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, shape, scale); } /// /// Generates a sequence of samples from the Weibull distribution. /// /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double shape, double scale) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, shape, scale); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The shape (k) of the Weibull distribution. Range: k > 0. /// The scale (λ) of the Weibull distribution. Range: λ > 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double shape, double scale) { if (shape <= 0.0 || scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, shape, scale); } } }