//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using System.Linq;
using IStation.Numerics.Random;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Weibull distribution.
/// For details about this distribution, see
/// Wikipedia - Weibull distribution.
///
///
/// The Weibull distribution is parametrized by a shape and scale parameter.
///
public class Weibull : IContinuousDistribution
{
System.Random _random;
readonly double _shape;
readonly double _scale;
///
/// Reusable intermediate result 1 / (_scale ^ _shape)
///
///
/// By caching this parameter we can get slightly better numerics precision
/// in certain constellations without any additional computations.
///
readonly double _scalePowShapeInv;
///
/// Initializes a new instance of the Weibull class.
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
public Weibull(double shape, double scale)
{
if (!IsValidParameterSet(shape, scale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_shape = shape;
_scale = scale;
_scalePowShapeInv = Math.Pow(scale, -shape);
}
///
/// Initializes a new instance of the Weibull class.
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// The random number generator which is used to draw random samples.
public Weibull(double shape, double scale, System.Random randomSource)
{
if (!IsValidParameterSet(shape, scale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_shape = shape;
_scale = scale;
_scalePowShapeInv = Math.Pow(scale, -shape);
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"Weibull(k = {_shape}, λ = {_scale})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
public static bool IsValidParameterSet(double shape, double scale)
{
return shape > 0.0 && scale > 0.0;
}
///
/// Gets the shape (k) of the Weibull distribution. Range: k > 0.
///
public double Shape => _shape;
///
/// Gets the scale (λ) of the Weibull distribution. Range: λ > 0.
///
public double Scale => _scale;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the Weibull distribution.
///
public double Mean => _scale*SpecialFunctions.Gamma(1.0 + (1.0/_shape));
///
/// Gets the variance of the Weibull distribution.
///
public double Variance => (_scale*_scale*SpecialFunctions.Gamma(1.0 + (2.0/_shape))) - (Mean*Mean);
///
/// Gets the standard deviation of the Weibull distribution.
///
public double StdDev => Math.Sqrt(Variance);
///
/// Gets the entropy of the Weibull distribution.
///
public double Entropy => (Constants.EulerMascheroni*(1.0 - (1.0/_shape))) + Math.Log(_scale/_shape) + 1.0;
///
/// Gets the skewness of the Weibull distribution.
///
public double Skewness
{
get
{
double mu = Mean;
double sigma = StdDev;
double sigma2 = sigma*sigma;
double sigma3 = sigma2*sigma;
return ((_scale*_scale*_scale*SpecialFunctions.Gamma(1.0 + (3.0/_shape))) - (3.0*sigma2*mu) - (mu*mu*mu))/sigma3;
}
}
///
/// Gets the mode of the Weibull distribution.
///
public double Mode
{
get
{
if (_shape <= 1.0)
{
return 0.0;
}
return _scale*Math.Pow((_shape - 1.0)/_shape, 1.0/_shape);
}
}
///
/// Gets the median of the Weibull distribution.
///
public double Median => _scale*Math.Pow(Constants.Ln2, 1.0/_shape);
///
/// Gets the minimum of the Weibull distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the Weibull distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
public double Density(double x)
{
if (x >= 0.0)
{
if (x == 0.0 && _shape == 1.0)
{
return _shape/_scale;
}
return _shape*Math.Pow(x/_scale, _shape - 1.0)*Math.Exp(-Math.Pow(x, _shape)*_scalePowShapeInv)/_scale;
}
return 0.0;
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
public double DensityLn(double x)
{
if (x >= 0.0)
{
if (x == 0.0 && _shape == 1.0)
{
return Math.Log(_shape) - Math.Log(_scale);
}
return Math.Log(_shape) + ((_shape - 1.0)*Math.Log(x/_scale)) - (Math.Pow(x, _shape)*_scalePowShapeInv) - Math.Log(_scale);
}
return double.NegativeInfinity;
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
public double CumulativeDistribution(double x)
{
if (x < 0.0)
{
return 0.0;
}
return -SpecialFunctions.ExponentialMinusOne(-Math.Pow(x, _shape)*_scalePowShapeInv);
}
///
/// Generates a sample from the Weibull distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, _shape, _scale);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _shape, _scale);
}
///
/// Generates a sequence of samples from the Weibull distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _shape, _scale);
}
static double SampleUnchecked(System.Random rnd, double shape, double scale)
{
var x = rnd.NextDouble();
return scale*Math.Pow(-Math.Log(x), 1.0/shape);
}
static IEnumerable SamplesUnchecked(System.Random rnd, double shape, double scale)
{
var exponent = 1.0/shape;
return rnd.NextDoubleSequence().Select(x => scale*Math.Pow(-Math.Log(x), exponent));
}
static void SamplesUnchecked(System.Random rnd, double[] values, double shape, double scale)
{
var exponent = 1.0/shape;
rnd.NextDoubles(values);
CommonParallel.For(0, values.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
values[i] = scale*Math.Pow(-Math.Log(values[i]), exponent);
}
});
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double shape, double scale, double x)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (x >= 0.0)
{
if (x == 0.0 && shape == 1.0)
{
return shape/scale;
}
return shape
*Math.Pow(x/scale, shape - 1.0)
*Math.Exp(-Math.Pow(x, shape)*Math.Pow(scale, -shape))
/scale;
}
return 0.0;
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double shape, double scale, double x)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (x >= 0.0)
{
if (x == 0.0 && shape == 1.0)
{
return Math.Log(shape) - Math.Log(scale);
}
return Math.Log(shape)
+ ((shape - 1.0)*Math.Log(x/scale))
- (Math.Pow(x, shape)*Math.Pow(scale, -shape))
- Math.Log(scale);
}
return double.NegativeInfinity;
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// the cumulative distribution at location .
///
public static double CDF(double shape, double scale, double x)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (x < 0.0)
{
return 0.0;
}
return -SpecialFunctions.ExponentialMinusOne(-Math.Pow(x, shape)*Math.Pow(scale, -shape));
}
///
/// Implemented according to: Parameter estimation of the Weibull probability distribution, 1994, Hongzhu Qiao, Chris P. Tsokos
///
///
///
/// Returns a Weibull distribution.
public static Weibull Estimate(IEnumerable samples, System.Random randomSource = null)
{
var samp = samples as double[] ?? samples.ToArray();
double n = samp.Length, s1 = 0, s2 = 0, s3 = 0, previousC = Int32.MinValue, QofC = 0;
if (n <= 1) throw new Exception("Observations not sufficient");
// Start values
double c = 10; double b = 0;
while (Math.Abs(c - previousC) >= 0.0001)
{
s1 = s2 = s3 = 0;
foreach (double x in samp)
{
if (x > 0)
{
s1 += Math.Log(x);
s2 += Math.Pow(x, c);
s3 += Math.Pow(x, c) * Math.Log(x);
}
}
QofC = n * s2 / (n * s3 - s1 * s2);
previousC = c;
c = (c + QofC) / 2;
}
foreach (double x in samp)
{
if (x > 0)
{
b += Math.Pow(x, c);
}
}
b = Math.Pow(b / n, 1 / c);
return new Weibull(c, b, randomSource);
}
///
/// Generates a sample from the Weibull distribution.
///
/// The random number generator to use.
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double shape, double scale)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, shape, scale);
}
///
/// Generates a sequence of samples from the Weibull distribution.
///
/// The random number generator to use.
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double shape, double scale)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, shape, scale);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double shape, double scale)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, shape, scale);
}
///
/// Generates a sample from the Weibull distribution.
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// a sample from the distribution.
public static double Sample(double shape, double scale)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, shape, scale);
}
///
/// Generates a sequence of samples from the Weibull distribution.
///
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double shape, double scale)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, shape, scale);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The shape (k) of the Weibull distribution. Range: k > 0.
/// The scale (λ) of the Weibull distribution. Range: λ > 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double shape, double scale)
{
if (shape <= 0.0 || scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, shape, scale);
}
}
}