// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Linq; using System.Numerics; namespace IStation.Numerics.Integration { /// /// Analytic integration algorithm for smooth functions with no discontinuities /// or derivative discontinuities and no poles inside the interval. /// public static class DoubleExponentialTransformation { /// /// Maximum number of iterations, until the asked /// maximum error is (likely to be) satisfied. /// const int NumberOfMaximumLevels = 10; /// /// Approximate the integral by the double exponential transformation /// /// The analytic smooth function to integrate. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// The expected relative accuracy of the approximation. /// Approximation of the finite integral in the given interval. public static double Integrate(Func f, double intervalBegin, double intervalEnd, double targetRelativeError) { return NewtonCotesTrapeziumRule.IntegrateAdaptiveTransformedOdd( f, intervalBegin, intervalEnd, Enumerable.Range(0, NumberOfMaximumLevels).Select(EvaluateAbcissas), Enumerable.Range(0, NumberOfMaximumLevels).Select(EvaluateWeights), 1.0, targetRelativeError); } /// /// Approximate the integral by the double exponential transformation /// /// The analytic smooth complex function to integrate, defined on the real domain. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// The expected relative accuracy of the approximation. /// Approximation of the finite integral in the given interval. public static Complex ContourIntegrate(Func f, double intervalBegin, double intervalEnd, double targetRelativeError) { return NewtonCotesTrapeziumRule.ContourIntegrateAdaptiveTransformedOdd( f, intervalBegin, intervalEnd, Enumerable.Range(0, NumberOfMaximumLevels).Select(EvaluateAbcissas), Enumerable.Range(0, NumberOfMaximumLevels).Select(EvaluateWeights), 1.0, targetRelativeError); } /// /// Compute the abscissa vector for a single level. /// /// The level to evaluate the abscissa vector for. /// Abscissa Vector. static double[] EvaluateAbcissas(int level) { if (level < PrecomputedAbscissas.Length) { return PrecomputedAbscissas[level]; } double step = level <= 1 ? 1.0 : (1.0/(2 << (level - 2))); double offset = level == 0 ? 0.0 : (1.0/(2 << (level - 1))); int length = level == 0 ? 4 : (3 << (level - 1)); double t = 0; var abcissas = new double[length]; for (int i = 0; i < abcissas.Length; i++) { double arg = offset + t; t += step; abcissas[i] = Math.Tanh(Constants.PiOver2*Math.Sinh(arg)); } return abcissas; } /// /// Compute the weight vector for a single level. /// /// The level to evaluate the weight vector for. /// Weight Vector. static double[] EvaluateWeights(int level) { if (level < PrecomputedWeights.Length) { return PrecomputedWeights[level]; } double step = level <= 1 ? 1.0 : (1.0/(2 << (level - 2))); double offset = level == 0 ? 0.0 : (1.0/(2 << (level - 1))); int length = level == 0 ? 4 : (3 << (level - 1)); double t = 0; var weights = new double[length]; for (int i = 0; i < weights.Length; i++) { double arg = offset + t; t += step; // TODO: reuse abscissas as computed in EvaluateAbcissas double abcissa = Math.Tanh(Constants.PiOver2*Math.Sinh(arg)); weights[i] = Constants.PiOver2*(1 - (abcissa*abcissa))*Math.Cosh(arg); } return weights; } #region Precomputed Abscissas and Weights /// /// Precomputed abscissa vector per level. /// static readonly double[][] PrecomputedAbscissas = { new[] { 0.00000000000000000000, 0.95136796407274694574, 0.99997747719246159286, 0.99999999999995705839 }, new[] { 0.67427149224843582608, 0.99751485645722438683, 0.99999998887566488198 }, new[] { 0.37720973816403417379, 0.85956905868989663517, 0.98704056050737689169, 0.99968826402835320905, 0.99999920473711471266, 0.99999999995285644818 }, new[] { 0.19435700332493543161, 0.53914670538796776905, 0.78060743898320029925, 0.91487926326457461091, 0.97396686819567744856, 0.99405550663140214329, 0.99906519645578584642, 0.99990938469514399984, 0.99999531604122052843, 0.99999989278161241838, 0.99999999914270509218, 0.99999999999823216531 }, new[] { 0.097923885287832333262, 0.28787993274271591456, 0.46125354393958570440, 0.61027365750063894488, 0.73101803479256151149, 0.82331700550640237006, 0.88989140278426019808, 0.93516085752198468323, 0.96411216422354729193, 0.98145482667733517003, 0.99112699244169880223, 0.99610866543750854254, 0.99845420876769773751, 0.99945143443527460584, 0.99982882207287494166, 0.99995387100562796075, 0.99998948201481850361, 0.99999801714059543208, 0.99999969889415261122, 0.99999996423908091534, 0.99999999678719909830, 0.99999999978973286224, 0.99999999999039393352, 0.99999999999970809734 }, new[] { 0.049055967305077886315, 0.14641798429058794053, 0.24156631953888365838, 0.33314226457763809244, 0.41995211127844715849, 0.50101338937930910152, 0.57558449063515165995, 0.64317675898520470128, 0.70355000514714201566, 0.75669390863372994941, 0.80279874134324126576, 0.84221924635075686382, 0.87543539763040867837, 0.90301328151357387064, 0.92556863406861266645, 0.94373478605275715685, 0.95813602271021369012, 0.96936673289691733517, 0.97797623518666497298, 0.98445883116743083087, 0.98924843109013389601, 0.99271699719682728538, 0.99517602615532735426, 0.99688031812819187372, 0.99803333631543375402, 0.99879353429880589929, 0.99928111192179195541, 0.99958475035151758732, 0.99976797159956083506, 0.99987486504878034648, 0.99993501992508242369, 0.99996759306794345976, 0.99998451990227082442, 0.99999293787666288565, 0.99999693244919035751, 0.99999873547186590954, 0.99999950700571943689, 0.99999981889371276701, 0.99999993755407837378, 0.99999997987450320175, 0.99999999396413420165, 0.99999999832336194826, 0.99999999957078777261, 0.99999999989927772326, 0.99999999997845533741, 0.99999999999582460688, 0.99999999999927152627, 0.99999999999988636130 }, new[] { 0.024539763574649160379, 0.073525122985671294475, 0.12222912220155764235, 0.17046797238201051811, 0.21806347346971200463, 0.26484507658344795046, 0.31065178055284596083, 0.35533382516507453330, 0.39875415046723775644, 0.44078959903390086627, 0.48133184611690504422, 0.52028805069123015958, 0.55758122826077823080, 0.59315035359195315880, 0.62695020805104287950, 0.65895099174335012438, 0.68913772506166767176, 0.71750946748732412721, 0.74407838354734739913, 0.76886868676824658459, 0.79191549237614211447, 0.81326360850297385168, 0.83296629391941087564, 0.85108400798784873261, 0.86768317577564598669, 0.88283498824466895513, 0.89661425428007602579, 0.90909831816302043511, 0.92036605303195280235, 0.93049693799715340631, 0.93957022393327475539, 0.94766419061515309734, 0.95485549580502268541, 0.96121861515111640753, 0.96682537031235585284, 0.97174454156548730892, 0.97604156025657673933, 0.97977827580061576265, 0.98301279148110110558, 0.98579936302528343597, 0.98818835380074264243, 0.99022624046752774694, 0.99195566300267761562, 0.99341551316926403900, 0.99464105571251119672, 0.99566407681695316965, 0.99651305464025377317, 0.99721334704346870224, 0.99778739195890653083, 0.99825491617199629344, 0.99863314864067747762, 0.99893703483351217373, 0.99917944893488591716, 0.99937140114093768690, 0.99952223765121720422, 0.99963983134560036519, 0.99973076151980848263, 0.99980048143113838630, 0.99985347277311141171, 0.99989338654759256426, 0.99992317012928932869, 0.99994518061445869309, 0.99996128480785666613, 0.99997294642523223656, 0.99998130127012072679, 0.99998722128200062811, 0.99999136844834487344, 0.99999423962761663478, 0.99999620334716617675, 0.99999752962380516793, 0.99999841381096473542, 0.99999899541068996962, 0.99999937270733536947, 0.99999961398855024275, 0.99999976602333243312, 0.99999986037121459941, 0.99999991800479471056, 0.99999995264266446185, 0.99999997311323594362, 0.99999998500307631173, 0.99999999178645609907, 0.99999999558563361584, 0.99999999767323673790, 0.99999999879798350040, 0.99999999939177687583, 0.99999999969875436925, 0.99999999985405611550, 0.99999999993088839501, 0.99999999996803321674, 0.99999999998556879008, 0.99999999999364632387, 0.99999999999727404948, 0.99999999999886126543, 0.99999999999953722654, 0.99999999999981720098, 0.99999999999992987953 } }; /// /// Precomputed weight vector per level. /// static readonly double[][] PrecomputedWeights = { new[] { 1.5707963267948966192, 0.230022394514788685, 0.00026620051375271690866, 1.3581784274539090834e-12 }, new[] { 0.96597657941230114801, 0.018343166989927842087, 2.1431204556943039358e-7 }, new[] { 1.3896147592472563229, 0.53107827542805397476, 0.076385743570832304188, 0.0029025177479013135936, 0.000011983701363170720047, 1.1631165814255782766e-9 }, new[] { 1.5232837186347052132, 1.1934630258491569639, 0.73743784836154784136, 0.36046141846934367417, 0.13742210773316772341, 0.039175005493600779072, 0.0077426010260642407123, 0.00094994680428346871691, 0.000062482559240744082891, 1.8263320593710659699e-6, 1.8687282268736410132e-8, 4.9378538776631926964e-11 }, new[] { 1.5587733555333301451, 1.466014426716965781, 1.297475750424977998, 1.0816349854900704074, 0.85017285645662006895, 0.63040513516474369106, 0.44083323627385823707, 0.290240679312454185, 0.17932441211072829296, 0.10343215422333290062, 0.055289683742240583845, 0.027133510013712003219, 0.012083543599157953493, 0.0048162981439284630173, 0.0016908739981426396472, 0.00051339382406790336017, 0.00013205234125609974879, 0.000028110164327940134749, 4.8237182032615502124e-6, 6.4777566035929719908e-7, 6.5835185127183396672e-8, 4.8760060974240625869e-9, 2.5216347918530148572e-10, 8.6759314149796046502e-12 }, new[] { 1.5677814313072218572, 1.5438811161769592204, 1.4972262225410362896, 1.4300083548722996676, 1.3452788847662516615, 1.2467012074518577048, 1.1382722433763053734, 1.0240449331118114483, 0.90787937915489531693, 0.79324270082051671787, 0.68306851634426375464, 0.57967810308778764708, 0.48475809121475539287, 0.39938474152571713515, 0.32408253961152890402, 0.258904639514053516, 0.20352399885860174519, 0.15732620348436615027, 0.11949741128869592428, 0.089103139240941462841, 0.065155533432536205042, 0.046668208054846613644, 0.032698732726609031113, 0.022379471063648476483, 0.014937835096050129696, 0.0097072237393916892692, 0.0061300376320830301252, 0.0037542509774318343023, 0.0022250827064786427022, 0.0012733279447082382027, 0.0007018595156842422708, 0.00037166693621677760301, 0.00018856442976700318572, 0.000091390817490710122732, 0.000042183183841757600604, 0.000018481813599879217116, 7.6595758525203162562e-6, 2.9916615878138787094e-6, 1.0968835125901264732e-6, 3.7595411862360630091e-7, 1.1992442782902770219e-7, 3.5434777171421953043e-8, 9.6498888961089633609e-9, 2.4091773256475940779e-9, 5.482835779709497755e-10, 1.1306055347494680536e-10, 2.0989335404511469109e-11, 3.4841937670261059685e-12 }, new[] { 1.5700420292795931467, 1.5640214037732320999, 1.5520531698454121192, 1.5342817381543034316, 1.5109197230741697127, 1.48224329788553807, 1.4485862549613225916, 1.4103329714462590129, 1.3679105116808964881, 1.3217801174437728579, 1.2724283455378627082, 1.2203581095793582207, 1.1660798699324345766, 1.1101031939653403796, 1.0529288799552666556, 0.99504180404613271514, 0.93690461274566793366, 0.87895234555278212039, 0.82158803526696470334, 0.7651792989089561367, 0.71005590120546898385, 0.65650824613162753076, 0.60478673057840362158, 0.55510187800363350959, 0.5076251588319080997, 0.4624903980553677613, 0.41979566844501548066, 0.37960556938665160999, 0.3419537959230168323, 0.30684590941791694932, 0.27426222968906810637, 0.24416077786983990868, 0.21648020911729617038, 0.19114268413342749532, 0.16805663794826916233, 0.14711941325785693248, 0.12821973363120098675, 0.11123999898874453035, 0.096058391865189467849, 0.082550788110701737654, 0.070592469906866999352, 0.060059642358636300319, 0.05083075757257047107, 0.042787652157725676034, 0.035816505604196436523, 0.029808628117310126969, 0.024661087314753282511, 0.020277183817500123926, 0.016566786254247575375, 0.013446536605285730674, 0.010839937168255907211, 0.0086773307495391815854, 0.0068957859690660035329, 0.0054388997976239984331, 0.0042565295990178580165, 0.0033044669940348302363, 0.0025440657675291729678, 0.0019418357759843675814, 0.0014690143599429791058, 0.0011011261134519383862, 0.00081754101332469493115, 0.00060103987991147422573, 0.00043739495615911687786, 0.00031497209186021200274, 0.00022435965205008549104, 0.00015802788400701191949, 0.00011002112846666697224, 0.000075683996586201477788, 0.000051421497447658802092, 0.0000344921247593431977, 0.000022832118109036146591, 0.000014908514031870608449, 9.5981941283784710776e-6, 6.0899100320949039256e-6, 3.8061983264644899045e-6, 2.3421667208528096843e-6, 1.4183067155493917523e-6, 8.4473756384859863469e-7, 4.9458288702754198508e-7, 2.8449923659159806339e-7, 1.6069394579076224911e-7, 8.9071395140242387124e-8, 4.8420950198072369669e-8, 2.579956822953589238e-8, 1.3464645522302038796e-8, 6.8784610955899001111e-9, 3.4371856744650090511e-9, 1.6788897682161906807e-9, 8.0099784479729665356e-10, 3.7299501843052790038e-10, 1.6939457789411646876e-10, 7.4967397573818224522e-11, 3.230446433325236576e-11, 1.3542512912336274432e-11, 5.5182369468174885821e-12, 2.1835922099233609052e-12 } }; #endregion } }