// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using System.Numerics; namespace IStation.Numerics.Integration { /// /// Approximation algorithm for definite integrals by the Trapezium rule of the Newton-Cotes family. /// /// /// Wikipedia - Trapezium Rule /// public static class NewtonCotesTrapeziumRule { /// /// Direct 2-point approximation of the definite integral in the provided interval by the trapezium rule. /// /// The analytic smooth function to integrate. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// Approximation of the finite integral in the given interval. public static double IntegrateTwoPoint(Func f, double intervalBegin, double intervalEnd) { if (f == null) { throw new ArgumentNullException(nameof(f)); } return (intervalEnd - intervalBegin)/2*(f(intervalBegin) + f(intervalEnd)); } /// /// Direct 2-point approximation of the definite integral in the provided interval by the trapezium rule. /// /// The analytic smooth complex function to integrate, defined on real domain. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// Approximation of the finite integral in the given interval. public static Complex ContourIntegrateTwoPoint(Func f, double intervalBegin, double intervalEnd) { if (f == null) { throw new ArgumentNullException(nameof(f)); } return (intervalEnd - intervalBegin) / 2 * (f(intervalBegin) + f(intervalEnd)); } /// /// Composite N-point approximation of the definite integral in the provided interval by the trapezium rule. /// /// The analytic smooth function to integrate. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// Number of composite subdivision partitions. /// Approximation of the finite integral in the given interval. public static double IntegrateComposite(Func f, double intervalBegin, double intervalEnd, int numberOfPartitions) { if (f == null) { throw new ArgumentNullException(nameof(f)); } if (numberOfPartitions <= 0) { throw new ArgumentOutOfRangeException(nameof(numberOfPartitions), "Value must be positive (and not zero)."); } double step = (intervalEnd - intervalBegin)/numberOfPartitions; double offset = step; double sum = 0.5*(f(intervalBegin) + f(intervalEnd)); for (int i = 0; i < numberOfPartitions - 1; i++) { // NOTE (ruegg, 2009-01-07): Do not combine intervalBegin and offset (numerical stability!) sum += f(intervalBegin + offset); offset += step; } return step*sum; } /// /// Composite N-point approximation of the definite integral in the provided interval by the trapezium rule. /// /// The analytic smooth complex function to integrate, defined on real domain. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// Number of composite subdivision partitions. /// Approximation of the finite integral in the given interval. public static Complex ContourIntegrateComposite(Func f, double intervalBegin, double intervalEnd, int numberOfPartitions) { if (f == null) { throw new ArgumentNullException(nameof(f)); } if (numberOfPartitions <= 0) { throw new ArgumentOutOfRangeException(nameof(numberOfPartitions), "Value must be positive (and not zero)."); } double step = (intervalEnd - intervalBegin) / numberOfPartitions; double offset = step; Complex sum = 0.5 * (f(intervalBegin) + f(intervalEnd)); for (int i = 0; i < numberOfPartitions - 1; i++) { // NOTE (ruegg, 2009-01-07): Do not combine intervalBegin and offset (numerical stability!) sum += f(intervalBegin + offset); offset += step; } return step * sum; } /// /// Adaptive approximation of the definite integral in the provided interval by the trapezium rule. /// /// The analytic smooth function to integrate. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// The expected accuracy of the approximation. /// Approximation of the finite integral in the given interval. public static double IntegrateAdaptive(Func f, double intervalBegin, double intervalEnd, double targetError) { if (f == null) { throw new ArgumentNullException(nameof(f)); } int numberOfPartitions = 1; double step = intervalEnd - intervalBegin; double sum = 0.5*step*(f(intervalBegin) + f(intervalEnd)); for (int k = 0; k < 20; k++) { double midpointsum = 0; for (int i = 0; i < numberOfPartitions; i++) { midpointsum += f(intervalBegin + ((i + 0.5)*step)); } midpointsum *= step; sum = 0.5*(sum + midpointsum); step *= 0.5; numberOfPartitions *= 2; if (sum.AlmostEqualRelative(midpointsum, targetError)) { break; } } return sum; } /// /// Adaptive approximation of the definite integral in the provided interval by the trapezium rule. /// /// The analytic smooth complex function to integrate, define don real domain. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// The expected accuracy of the approximation. /// Approximation of the finite integral in the given interval. public static Complex ContourIntegrateAdaptive(Func f, double intervalBegin, double intervalEnd, double targetError) { if (f == null) { throw new ArgumentNullException(nameof(f)); } int numberOfPartitions = 1; double step = intervalEnd - intervalBegin; Complex sum = 0.5 * step * (f(intervalBegin) + f(intervalEnd)); for (int k = 0; k < 20; k++) { Complex midpointsum = 0; for (int i = 0; i < numberOfPartitions; i++) { midpointsum += f(intervalBegin + ((i + 0.5) * step)); } midpointsum *= step; sum = 0.5 * (sum + midpointsum); step *= 0.5; numberOfPartitions *= 2; if (sum.AlmostEqualRelative(midpointsum, targetError)) { break; } } return sum; } /// /// Adaptive approximation of the definite integral by the trapezium rule. /// /// The analytic smooth function to integrate. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// Abscissa vector per level provider. /// Weight vector per level provider. /// First Level Step /// The expected relative accuracy of the approximation. /// Approximation of the finite integral in the given interval. public static double IntegrateAdaptiveTransformedOdd( Func f, double intervalBegin, double intervalEnd, IEnumerable levelAbscissas, IEnumerable levelWeights, double levelOneStep, double targetRelativeError) { if (f == null) { throw new ArgumentNullException(nameof(f)); } if (levelAbscissas == null) { throw new ArgumentNullException(nameof(levelAbscissas)); } if (levelWeights == null) { throw new ArgumentNullException(nameof(levelWeights)); } double linearSlope = 0.5*(intervalEnd - intervalBegin); double linearOffset = 0.5*(intervalEnd + intervalBegin); targetRelativeError /= 5*linearSlope; using (var abcissasIterator = levelAbscissas.GetEnumerator()) using (var weightsIterator = levelWeights.GetEnumerator()) { double step = levelOneStep; // First Level abcissasIterator.MoveNext(); weightsIterator.MoveNext(); double[] abcissasL1 = abcissasIterator.Current; double[] weightsL1 = weightsIterator.Current; double sum = f(linearOffset)*weightsL1[0]; for (int i = 1; i < abcissasL1.Length; i++) { sum += weightsL1[i]*(f((linearSlope*abcissasL1[i]) + linearOffset) + f(-(linearSlope*abcissasL1[i]) + linearOffset)); } sum *= step; // Additional Levels double previousDelta = double.MaxValue; for (int level = 1; abcissasIterator.MoveNext() && weightsIterator.MoveNext(); level++) { double[] abcissas = abcissasIterator.Current; double[] weights = weightsIterator.Current; double midpointsum = 0; for (int i = 0; i < abcissas.Length; i++) { midpointsum += weights[i]*(f((linearSlope*abcissas[i]) + linearOffset) + f(-(linearSlope*abcissas[i]) + linearOffset)); } midpointsum *= step; sum = 0.5*(sum + midpointsum); step *= 0.5; double delta = Math.Abs(sum - midpointsum); if (level == 1) { previousDelta = delta; continue; } double r = Math.Log(delta)/Math.Log(previousDelta); previousDelta = delta; if (r > 1.9 && r < 2.1) { // convergence region delta = Math.Sqrt(delta); } if (sum.AlmostEqualNormRelative(midpointsum, delta, targetRelativeError)) { break; } } return sum*linearSlope; } } /// /// Adaptive approximation of the definite integral by the trapezium rule. /// /// The analytic smooth complex function to integrate, defined on the real domain. /// Where the interval starts, inclusive and finite. /// Where the interval stops, inclusive and finite. /// Abscissa vector per level provider. /// Weight vector per level provider. /// First Level Step /// The expected relative accuracy of the approximation. /// Approximation of the finite integral in the given interval. public static Complex ContourIntegrateAdaptiveTransformedOdd( Func f, double intervalBegin, double intervalEnd, IEnumerable levelAbscissas, IEnumerable levelWeights, double levelOneStep, double targetRelativeError) { if (f == null) { throw new ArgumentNullException(nameof(f)); } if (levelAbscissas == null) { throw new ArgumentNullException(nameof(levelAbscissas)); } if (levelWeights == null) { throw new ArgumentNullException(nameof(levelWeights)); } double linearSlope = 0.5 * (intervalEnd - intervalBegin); double linearOffset = 0.5 * (intervalEnd + intervalBegin); targetRelativeError /= 5 * linearSlope; using (var abcissasIterator = levelAbscissas.GetEnumerator()) using (var weightsIterator = levelWeights.GetEnumerator()) { double step = levelOneStep; // First Level abcissasIterator.MoveNext(); weightsIterator.MoveNext(); double[] abcissasL1 = abcissasIterator.Current; double[] weightsL1 = weightsIterator.Current; Complex sum = f(linearOffset) * weightsL1[0]; for (int i = 1; i < abcissasL1.Length; i++) { sum += weightsL1[i] * (f((linearSlope * abcissasL1[i]) + linearOffset) + f(-(linearSlope * abcissasL1[i]) + linearOffset)); } sum *= step; // Additional Levels double previousDelta = double.MaxValue; for (int level = 1; abcissasIterator.MoveNext() && weightsIterator.MoveNext(); level++) { double[] abcissas = abcissasIterator.Current; double[] weights = weightsIterator.Current; Complex midpointsum = 0; for (int i = 0; i < abcissas.Length; i++) { midpointsum += weights[i] * (f((linearSlope * abcissas[i]) + linearOffset) + f(-(linearSlope * abcissas[i]) + linearOffset)); } midpointsum *= step; sum = 0.5 * (sum + midpointsum); step *= 0.5; double delta = Complex.Abs(sum - midpointsum); if (level == 1) { previousDelta = delta; continue; } double r = Math.Log(delta) / Math.Log(previousDelta); previousDelta = delta; if (r > 1.9 && r < 2.1) { // convergence region delta = Math.Sqrt(delta); } if (sum.Real.AlmostEqualNormRelative(midpointsum.Real, delta, targetRelativeError) && sum.Imaginary.AlmostEqualNormRelative(midpointsum.Imaginary, delta, targetRelativeError)) { break; } } return sum * linearSlope; } } } }