//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.LinearAlgebra.Double;
using IStation.Numerics.Optimization.LineSearch;
namespace IStation.Numerics.Optimization
{
///
/// Broyden-Fletcher-Goldfarb-Shanno solver for finding function minima
/// See http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
/// Inspired by implementation: https://github.com/PatWie/CppNumericalSolvers/blob/master/src/BfgsSolver.cpp
///
public static class BfgsSolver
{
private const double GradientTolerance = 1e-5;
private const int MaxIterations = 100000;
///
/// Finds a minimum of a function by the BFGS quasi-Newton method
/// This uses the function and it's gradient (partial derivatives in each direction) and approximates the Hessian
///
/// An initial guess
/// Evaluates the function at a point
/// Evaluates the gradient of the function at a point
/// The minimum found
public static Vector Solve(Vector initialGuess, Func, double> functionValue, Func, Vector> functionGradient)
{
var objectiveFunction = ObjectiveFunction.Gradient(functionValue, functionGradient);
objectiveFunction.EvaluateAt(initialGuess);
int dim = initialGuess.Count;
int iter = 0;
// H represents the approximation of the inverse hessian matrix
// it is updated via the Sherman–Morrison formula (http://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula)
Matrix H = DenseMatrix.CreateIdentity(dim);
Vector x = initialGuess;
Vector x_old = x;
Vector grad;
WolfeLineSearch wolfeLineSearch = new WeakWolfeLineSearch(1e-4, 0.9, 1e-5, 200);
do
{
// search along the direction of the gradient
grad = objectiveFunction.Gradient;
Vector p = -1 * H * grad;
var lineSearchResult = wolfeLineSearch.FindConformingStep(objectiveFunction, p, 1.0);
double rate = lineSearchResult.FinalStep;
x = x + rate * p;
Vector grad_old = grad;
// update the gradient
objectiveFunction.EvaluateAt(x);
grad = objectiveFunction.Gradient;// functionGradient(x);
Vector s = x - x_old;
Vector y = grad - grad_old;
double rho = 1.0 / (y * s);
if (iter == 0)
{
// set up an initial hessian
H = (y * s) / (y * y) * DenseMatrix.CreateIdentity(dim);
}
var sM = s.ToColumnMatrix();
var yM = y.ToColumnMatrix();
// Update the estimate of the hessian
H = H
- rho * (sM * (yM.TransposeThisAndMultiply(H)) + (H * yM).TransposeAndMultiply(sM))
+ rho * rho * (y.DotProduct(H * y) + 1.0 / rho) * (sM.TransposeAndMultiply(sM));
x_old = x;
iter++;
}
while ((grad.InfinityNorm() > GradientTolerance) && (iter < MaxIterations));
return x;
}
}
}