// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2017 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using IStation.Numerics.LinearAlgebra; using IStation.Numerics.LinearAlgebra.Double; using IStation.Numerics.Optimization.LineSearch; namespace IStation.Numerics.Optimization { /// /// Broyden-Fletcher-Goldfarb-Shanno solver for finding function minima /// See http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm /// Inspired by implementation: https://github.com/PatWie/CppNumericalSolvers/blob/master/src/BfgsSolver.cpp /// public static class BfgsSolver { private const double GradientTolerance = 1e-5; private const int MaxIterations = 100000; /// /// Finds a minimum of a function by the BFGS quasi-Newton method /// This uses the function and it's gradient (partial derivatives in each direction) and approximates the Hessian /// /// An initial guess /// Evaluates the function at a point /// Evaluates the gradient of the function at a point /// The minimum found public static Vector Solve(Vector initialGuess, Func, double> functionValue, Func, Vector> functionGradient) { var objectiveFunction = ObjectiveFunction.Gradient(functionValue, functionGradient); objectiveFunction.EvaluateAt(initialGuess); int dim = initialGuess.Count; int iter = 0; // H represents the approximation of the inverse hessian matrix // it is updated via the Sherman–Morrison formula (http://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula) Matrix H = DenseMatrix.CreateIdentity(dim); Vector x = initialGuess; Vector x_old = x; Vector grad; WolfeLineSearch wolfeLineSearch = new WeakWolfeLineSearch(1e-4, 0.9, 1e-5, 200); do { // search along the direction of the gradient grad = objectiveFunction.Gradient; Vector p = -1 * H * grad; var lineSearchResult = wolfeLineSearch.FindConformingStep(objectiveFunction, p, 1.0); double rate = lineSearchResult.FinalStep; x = x + rate * p; Vector grad_old = grad; // update the gradient objectiveFunction.EvaluateAt(x); grad = objectiveFunction.Gradient;// functionGradient(x); Vector s = x - x_old; Vector y = grad - grad_old; double rho = 1.0 / (y * s); if (iter == 0) { // set up an initial hessian H = (y * s) / (y * y) * DenseMatrix.CreateIdentity(dim); } var sM = s.ToColumnMatrix(); var yM = y.ToColumnMatrix(); // Update the estimate of the hessian H = H - rho * (sM * (yM.TransposeThisAndMultiply(H)) + (H * yM).TransposeAndMultiply(sM)) + rho * rho * (y.DotProduct(H * y) + 1.0 / rho) * (sM.TransposeAndMultiply(sM)); x_old = x; iter++; } while ((grad.InfinityNorm() > GradientTolerance) && (iter < MaxIterations)); return x; } } }