//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.LinearAlgebra.Double;
namespace IStation.Numerics.Optimization
{
public abstract class MinimizerBase
{
public double GradientTolerance { get; set; }
public double ParameterTolerance { get; set; }
public double FunctionProgressTolerance { get; set; }
public int MaximumIterations { get; set; }
protected const double VerySmall = 1e-15;
///
/// Creates a base class for minimization
///
/// The gradient tolerance
/// The parameter tolerance
/// The function progress tolerance
/// The maximum number of iterations
protected MinimizerBase(double gradientTolerance, double parameterTolerance, double functionProgressTolerance, int maximumIterations)
{
GradientTolerance = gradientTolerance;
ParameterTolerance = parameterTolerance;
FunctionProgressTolerance = functionProgressTolerance;
MaximumIterations = maximumIterations;
}
protected ExitCondition ExitCriteriaSatisfied(IObjectiveFunctionEvaluation candidatePoint, IObjectiveFunctionEvaluation lastPoint, int iterations)
{
Vector relGrad = new DenseVector(candidatePoint.Point.Count);
double relativeGradient = 0.0;
double normalizer = Math.Max(Math.Abs(candidatePoint.Value), 1.0);
for (int ii = 0; ii < relGrad.Count; ++ii)
{
double projectedGradient = GetProjectedGradient(candidatePoint, ii);
double tmp = projectedGradient *
Math.Max(Math.Abs(candidatePoint.Point[ii]), 1.0) / normalizer;
relativeGradient = Math.Max(relativeGradient, Math.Abs(tmp));
}
if (relativeGradient < GradientTolerance)
{
return ExitCondition.RelativeGradient;
}
if (lastPoint != null)
{
double mostProgress = 0.0;
for (int ii = 0; ii < candidatePoint.Point.Count; ++ii)
{
var tmp = Math.Abs(candidatePoint.Point[ii] - lastPoint.Point[ii]) /
Math.Max(Math.Abs(lastPoint.Point[ii]), 1.0);
mostProgress = Math.Max(mostProgress, tmp);
}
if (mostProgress < ParameterTolerance)
{
return ExitCondition.LackOfProgress;
}
double functionChange = candidatePoint.Value - lastPoint.Value;
if (iterations > 500 && functionChange < 0 && Math.Abs(functionChange) < FunctionProgressTolerance)
return ExitCondition.LackOfProgress;
}
return ExitCondition.None;
}
protected virtual double GetProjectedGradient(IObjectiveFunctionEvaluation candidatePoint, int ii)
{
return candidatePoint.Gradient[ii];
}
protected void ValidateGradientAndObjective(IObjectiveFunctionEvaluation eval)
{
foreach (var x in eval.Gradient)
{
if (Double.IsNaN(x) || Double.IsInfinity(x))
throw new EvaluationException("Non-finite gradient returned.", eval);
}
if (Double.IsNaN(eval.Value) || Double.IsInfinity(eval.Value))
throw new EvaluationException("Non-finite objective function returned.", eval);
}
}
}