//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
#if NATIVE
using System;
using System.Security;
using IStation.Numerics.Providers.Common.Cuda;
namespace IStation.Numerics.Providers.LinearAlgebra.Cuda
{
///
/// NVidia's CUDA Toolkit linear algebra provider.
///
internal partial class CudaLinearAlgebraProvider
{
///
/// Computes the dot product of x and y.
///
/// The vector x.
/// The vector y.
/// The dot product of x and y.
/// This is equivalent to the DOT BLAS routine.
[SecuritySafeCritical]
public override float DotProduct(float[] x, float[] y)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (x.Length != y.Length)
{
throw new ArgumentException("The array arguments must have the same length.");
}
return SafeNativeMethods.s_dot_product(_blasHandle, x.Length, x, y);
}
///
/// Adds a scaled vector to another: result = y + alpha*x.
///
/// The vector to update.
/// The value to scale by.
/// The vector to add to .
/// The result of the addition.
/// This is similar to the AXPY BLAS routine.
[SecuritySafeCritical]
public override void AddVectorToScaledVector(float[] y, float alpha, float[] x, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (y.Length != x.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (!ReferenceEquals(y, result))
{
Array.Copy(y, 0, result, 0, y.Length);
}
if (alpha == 0.0f)
{
return;
}
SafeNativeMethods.s_axpy(_blasHandle, y.Length, alpha, x, result);
}
///
/// Scales an array. Can be used to scale a vector and a matrix.
///
/// The scalar.
/// The values to scale.
/// This result of the scaling.
/// This is similar to the SCAL BLAS routine.
[SecuritySafeCritical]
public override void ScaleArray(float alpha, float[] x, float[] result)
{
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (!ReferenceEquals(x, result))
{
Array.Copy(x, 0, result, 0, x.Length);
}
if (alpha == 1.0f)
{
return;
}
SafeNativeMethods.s_scale(_blasHandle, x.Length, alpha, result);
}
///
/// Multiples two matrices. result = x * y
///
/// The x matrix.
/// The number of rows in the x matrix.
/// The number of columns in the x matrix.
/// The y matrix.
/// The number of rows in the y matrix.
/// The number of columns in the y matrix.
/// Where to store the result of the multiplication.
/// This is a simplified version of the BLAS GEMM routine with alpha
/// set to 1.0f and beta set to 0.0f, and x and y are not transposed.
public override void MatrixMultiply(float[] x, int rowsX, int columnsX, float[] y, int rowsY, int columnsY, float[] result)
{
MatrixMultiplyWithUpdate(Transpose.DontTranspose, Transpose.DontTranspose, 1.0f, x, rowsX, columnsX, y, rowsY, columnsY, 0.0f, result);
}
///
/// Multiplies two matrices and updates another with the result. c = alpha*op(a)*op(b) + beta*c
///
/// How to transpose the matrix.
/// How to transpose the matrix.
/// The value to scale matrix.
/// The a matrix.
/// The number of rows in the matrix.
/// The number of columns in the matrix.
/// The b matrix
/// The number of rows in the matrix.
/// The number of columns in the matrix.
/// The value to scale the matrix.
/// The c matrix.
[SecuritySafeCritical]
public override void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, float alpha, float[] a, int rowsA, int columnsA, float[] b, int rowsB, int columnsB, float beta, float[] c)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (c == null)
{
throw new ArgumentNullException(nameof(c));
}
var m = transposeA == Transpose.DontTranspose ? rowsA : columnsA;
var n = transposeB == Transpose.DontTranspose ? columnsB : rowsB;
var k = transposeA == Transpose.DontTranspose ? columnsA : rowsA;
var l = transposeB == Transpose.DontTranspose ? rowsB : columnsB;
if (c.Length != m*n)
{
throw new ArgumentException("Matrix dimensions must agree.");
}
if (k != l)
{
throw new ArgumentException("Matrix dimensions must agree.");
}
SafeNativeMethods.s_matrix_multiply(_blasHandle, transposeA.ToCUDA(), transposeB.ToCUDA(), m, n, k, alpha, a, b, beta, c);
}
///
/// Computes the LUP factorization of A. P*A = L*U.
///
/// An by matrix. The matrix is overwritten with the
/// the LU factorization on exit. The lower triangular factor L is stored in under the diagonal of (the diagonal is always 1.0f
/// for the L factor). The upper triangular factor U is stored on and above the diagonal of .
/// The order of the square matrix .
/// On exit, it contains the pivot indices. The size of the array must be .
/// This is equivalent to the GETRF LAPACK routine.
[SecuritySafeCritical]
public override void LUFactor(float[] data, int order, int[] ipiv)
{
if (data == null)
{
throw new ArgumentNullException(nameof(data));
}
if (ipiv == null)
{
throw new ArgumentNullException(nameof(ipiv));
}
if (data.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(data));
}
if (ipiv.Length != order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(ipiv));
}
Solver(SafeNativeMethods.s_lu_factor(_solverHandle, order, data, ipiv));
}
///
/// Computes the inverse of matrix using LU factorization.
///
/// The N by N matrix to invert. Contains the inverse On exit.
/// The order of the square matrix .
/// This is equivalent to the GETRF and GETRI LAPACK routines.
[SecuritySafeCritical]
public override void LUInverse(float[] a, int order)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
Solver(SafeNativeMethods.s_lu_inverse(_solverHandle, _blasHandle, order, a));
}
///
/// Computes the inverse of a previously factored matrix.
///
/// The LU factored N by N matrix. Contains the inverse On exit.
/// The order of the square matrix .
/// The pivot indices of .
/// This is equivalent to the GETRI LAPACK routine.
[SecuritySafeCritical]
public override void LUInverseFactored(float[] a, int order, int[] ipiv)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (ipiv == null)
{
throw new ArgumentNullException(nameof(ipiv));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (ipiv.Length != order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(ipiv));
}
BLAS(SafeNativeMethods.s_lu_inverse_factored(_blasHandle, order, a, ipiv));
}
///
/// Solves A*X=B for X using LU factorization.
///
/// The number of columns of B.
/// The square matrix A.
/// The order of the square matrix .
/// On entry the B matrix; on exit the X matrix.
/// This is equivalent to the GETRF and GETRS LAPACK routines.
[SecuritySafeCritical]
public override void LUSolve(int columnsOfB, float[] a, int order, float[] b)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (b.Length != columnsOfB*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
Solver(SafeNativeMethods.s_lu_solve(_solverHandle, order, columnsOfB, a, b));
}
///
/// Solves A*X=B for X using a previously factored A matrix.
///
/// The number of columns of B.
/// The factored A matrix.
/// The order of the square matrix .
/// The pivot indices of .
/// On entry the B matrix; on exit the X matrix.
/// This is equivalent to the GETRS LAPACK routine.
[SecuritySafeCritical]
public override void LUSolveFactored(int columnsOfB, float[] a, int order, int[] ipiv, float[] b)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (ipiv == null)
{
throw new ArgumentNullException(nameof(ipiv));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (ipiv.Length != order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(ipiv));
}
if (b.Length != columnsOfB*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
Solver(SafeNativeMethods.s_lu_solve_factored(_solverHandle, order, columnsOfB, a, ipiv, b));
}
///
/// Computes the Cholesky factorization of A.
///
/// On entry, a square, positive definite matrix. On exit, the matrix is overwritten with the
/// the Cholesky factorization.
/// The number of rows or columns in the matrix.
/// This is equivalent to the POTRF LAPACK routine.
[SecuritySafeCritical]
public override void CholeskyFactor(float[] a, int order)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (order < 1)
{
throw new ArgumentException("Value must be positive.", nameof(order));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
Solver(SafeNativeMethods.s_cholesky_factor(_solverHandle, order, a));
}
///
/// Solves A*X=B for X using Cholesky factorization.
///
/// The square, positive definite matrix A.
/// The number of rows and columns in A.
/// On entry the B matrix; on exit the X matrix.
/// The number of columns in the B matrix.
/// This is equivalent to the POTRF add POTRS LAPACK routines.
///
[SecuritySafeCritical]
public override void CholeskySolve(float[] a, int orderA, float[] b, int columnsB)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (b.Length != orderA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
Solver(SafeNativeMethods.s_cholesky_solve(_solverHandle, orderA, columnsB, a, b));
}
///
/// Solves A*X=B for X using a previously factored A matrix.
///
/// The square, positive definite matrix A.
/// The number of rows and columns in A.
/// On entry the B matrix; on exit the X matrix.
/// The number of columns in the B matrix.
/// This is equivalent to the POTRS LAPACK routine.
[SecuritySafeCritical]
public override void CholeskySolveFactored(float[] a, int orderA, float[] b, int columnsB)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (b.Length != orderA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
Solver(SafeNativeMethods.s_cholesky_solve_factored(_solverHandle, orderA, columnsB, a, b));
}
///
/// Solves A*X=B for X using the singular value decomposition of A.
///
/// On entry, the M by N matrix to decompose.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// The B matrix.
/// The number of columns of B.
/// On exit, the solution matrix.
public override void SvdSolve(float[] a, int rowsA, int columnsA, float[] b, int columnsB, float[] x)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (b.Length != rowsA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (x.Length != columnsA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
var s = new float[Math.Min(rowsA, columnsA)];
var u = new float[rowsA*rowsA];
var vt = new float[columnsA*columnsA];
var clone = new float[a.Length];
a.Copy(clone);
SingularValueDecomposition(true, clone, rowsA, columnsA, s, u, vt);
SvdSolveFactored(rowsA, columnsA, s, u, vt, b, columnsB, x);
}
///
/// Computes the singular value decomposition of A.
///
/// Compute the singular U and VT vectors or not.
/// On entry, the M by N matrix to decompose. On exit, A may be overwritten.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// The singular values of A in ascending value.
/// If is true, on exit U contains the left
/// singular vectors.
/// If is true, on exit VT contains the transposed
/// right singular vectors.
/// This is equivalent to the GESVD LAPACK routine.
[SecuritySafeCritical]
public override void SingularValueDecomposition(bool computeVectors, float[] a, int rowsA, int columnsA, float[] s, float[] u, float[] vt)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (s == null)
{
throw new ArgumentNullException(nameof(s));
}
if (u == null)
{
throw new ArgumentNullException(nameof(u));
}
if (vt == null)
{
throw new ArgumentNullException(nameof(vt));
}
if (u.Length != rowsA*rowsA)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(u));
}
if (vt.Length != columnsA*columnsA)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(vt));
}
if (s.Length != Math.Min(rowsA, columnsA))
{
throw new ArgumentException("The array arguments must have the same length.", nameof(s));
}
if (columnsA > rowsA || !computeVectors) // see remarks http://docs.nvidia.com/cuda/cusolver/index.html#cuds-lt-t-gt-gesvd
base.SingularValueDecomposition(computeVectors, a, rowsA, columnsA, s, u, vt);
else Solver(SafeNativeMethods.s_svd_factor(_solverHandle, computeVectors, rowsA, columnsA, a, s, u, vt));
}
}
}
#endif