//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2020 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics.RootFinding
{
///
/// Algorithm by Brent, Van Wijngaarden, Dekker et al.
/// Implementation inspired by Press, Teukolsky, Vetterling, and Flannery, "Numerical Recipes in C", 2nd edition, Cambridge University Press
///
public static class Brent
{
/// Find a solution of the equation f(x)=0.
/// The function to find roots from.
/// Guess for the low value of the range where the root is supposed to be. Will be expanded if needed.
/// Guess for the high value of the range where the root is supposed to be. Will be expanded if needed.
/// Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Default 1e-8. Must be greater than 0.
/// Maximum number of iterations. Default 100.
/// Factor at which to expand the bounds, if needed. Default 1.6.
/// Maximum number of expand iterations. Default 100.
/// Returns the root with the specified accuracy.
///
public static double FindRootExpand(Func f, double guessLowerBound, double guessUpperBound, double accuracy = 1e-8, int maxIterations = 100, double expandFactor = 1.6, int maxExpandIteratons = 100)
{
ZeroCrossingBracketing.ExpandReduce(f, ref guessLowerBound, ref guessUpperBound, expandFactor, maxExpandIteratons, maxExpandIteratons*10);
return FindRoot(f, guessLowerBound, guessUpperBound, accuracy, maxIterations);
}
/// Find a solution of the equation f(x)=0.
/// The function to find roots from.
/// The low value of the range where the root is supposed to be.
/// The high value of the range where the root is supposed to be.
/// Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Default 1e-8. Must be greater than 0.
/// Maximum number of iterations. Default 100.
/// Returns the root with the specified accuracy.
///
public static double FindRoot(Func f, double lowerBound, double upperBound, double accuracy = 1e-8, int maxIterations = 100)
{
double root;
if (TryFindRoot(f, lowerBound, upperBound, accuracy, maxIterations, out root))
{
return root;
}
throw new NonConvergenceException("The algorithm has failed, exceeded the number of iterations allowed or there is no root within the provided bounds.");
}
/// Find a solution of the equation f(x)=0.
/// The function to find roots from.
/// The low value of the range where the root is supposed to be.
/// The high value of the range where the root is supposed to be.
/// Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Must be greater than 0.
/// Maximum number of iterations. Usually 100.
/// The root that was found, if any. Undefined if the function returns false.
/// True if a root with the specified accuracy was found, else false.
public static bool TryFindRoot(Func f, double lowerBound, double upperBound, double accuracy, int maxIterations, out double root)
{
if (accuracy <= 0)
{
throw new ArgumentOutOfRangeException(nameof(accuracy), "Must be greater than zero.");
}
double fmin = f(lowerBound);
double fmax = f(upperBound);
double froot = fmax;
double d = 0.0, e = 0.0;
root = upperBound;
double xMid = double.NaN;
// Root must be bracketed.
if (Math.Sign(fmin) == Math.Sign(fmax))
{
return false;
}
for (int i = 0; i <= maxIterations; i++)
{
// adjust bounds
if (Math.Sign(froot) == Math.Sign(fmax))
{
upperBound = lowerBound;
fmax = fmin;
e = d = root - lowerBound;
}
if (Math.Abs(fmax) < Math.Abs(froot))
{
lowerBound = root;
root = upperBound;
upperBound = lowerBound;
fmin = froot;
froot = fmax;
fmax = fmin;
}
// convergence check
double xAcc1 = Precision.PositiveDoublePrecision*Math.Abs(root) + 0.5*accuracy;
double xMidOld = xMid;
xMid = (upperBound - root)/2.0;
if (Math.Abs(xMid) <= xAcc1 || froot.AlmostEqualNormRelative(0, froot, accuracy))
{
return true;
}
if (xMid == xMidOld)
{
// accuracy not sufficient, but cannot be improved further
return false;
}
if (Math.Abs(e) >= xAcc1 && Math.Abs(fmin) > Math.Abs(froot))
{
// Attempt inverse quadratic interpolation
double s = froot/fmin;
double p;
double q;
if (lowerBound.AlmostEqualRelative(upperBound))
{
p = 2.0*xMid*s;
q = 1.0 - s;
}
else
{
q = fmin/fmax;
double r = froot/fmax;
p = s*(2.0*xMid*q*(q - r) - (root - lowerBound)*(r - 1.0));
q = (q - 1.0)*(r - 1.0)*(s - 1.0);
}
if (p > 0.0)
{
// Check whether in bounds
q = -q;
}
p = Math.Abs(p);
if (2.0*p < Math.Min(3.0*xMid*q - Math.Abs(xAcc1*q), Math.Abs(e*q)))
{
// Accept interpolation
e = d;
d = p/q;
}
else
{
// Interpolation failed, use bisection
d = xMid;
e = d;
}
}
else
{
// Bounds decreasing too slowly, use bisection
d = xMid;
e = d;
}
lowerBound = root;
fmin = froot;
if (Math.Abs(d) > xAcc1)
{
root += d;
}
else
{
root += Sign(xAcc1, xMid);
}
froot = f(root);
}
return false;
}
/// Helper method useful for preventing rounding errors.
/// a*sign(b)
static double Sign(double a, double b)
{
return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);
}
}
}