//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using Complex = System.Numerics.Complex;
namespace IStation.Numerics.RootFinding
{
///
/// Finds roots to the cubic equation x^3 + a2*x^2 + a1*x + a0 = 0
/// Implements the cubic formula in http://mathworld.wolfram.com/CubicFormula.html
///
public static class Cubic
{
// D = Q^3 + R^2 is the polynomial discriminant.
// D > 0, 1 real root
// D = 0, 3 real roots, at least two are equal
// D < 0, 3 real and unequal roots
///
/// Q and R are transformed variables.
///
static void QR(double a2, double a1, double a0, out double Q, out double R)
{
Q = (3*a1 - a2*a2)/9.0;
R = (9.0*a2*a1 - 27*a0 - 2*a2*a2*a2)/54.0;
}
///
/// n^(1/3) - work around a negative double raised to (1/3)
///
static double PowThird(double n)
{
return Math.Pow(Math.Abs(n), 1d/3d)*Math.Sign(n);
}
///
/// Find all real-valued roots of the cubic equation a0 + a1*x + a2*x^2 + x^3 = 0.
/// Note the special coefficient order ascending by exponent (consistent with polynomials).
///
public static Tuple RealRoots(double a0, double a1, double a2)
{
double Q, R;
QR(a2, a1, a0, out Q, out R);
var Q3 = Q*Q*Q;
var D = Q3 + R*R;
var shift = -a2/3d;
double x1;
double x2 = double.NaN;
double x3 = double.NaN;
if (D >= 0)
{
// when D >= 0, use eqn (54)-(56) where S and T are real
double sqrtD = Math.Pow(D, 0.5);
double S = PowThird(R + sqrtD);
double T = PowThird(R - sqrtD);
x1 = shift + (S + T);
if (D == 0)
{
x2 = shift - S;
}
}
else
{
// 3 real roots, use eqn (70)-(73) to calculate the real roots
double theta = Math.Acos(R/Math.Sqrt(-Q3));
x1 = 2d*Math.Sqrt(-Q)*Math.Cos(theta/3.0) + shift;
x2 = 2d*Math.Sqrt(-Q)*Math.Cos((theta + 2.0*Constants.Pi)/3d) + shift;
x3 = 2d*Math.Sqrt(-Q)*Math.Cos((theta - 2.0*Constants.Pi)/3d) + shift;
}
return new Tuple(x1, x2, x3);
}
///
/// Find all three complex roots of the cubic equation d + c*x + b*x^2 + a*x^3 = 0.
/// Note the special coefficient order ascending by exponent (consistent with polynomials).
///
public static Tuple Roots(double d, double c, double b, double a)
{
double A = b*b - 3*a*c;
double B = 2*b*b*b - 9*a*b*c + 27*a*a*d;
double s = -1/(3*a);
double D = (B*B - 4*A*A*A)/(-27*a*a);
if (D == 0d)
{
if (A == 0d)
{
var u = new Complex(s*b, 0d);
return new Tuple(u, u, u);
}
var v = new Complex((9*a*d - b*c)/(2*A), 0d);
var w = new Complex((4*a*b*c - 9*a*a*d - b*b*b)/(a*A), 0d);
return new Tuple(v, v, w);
}
var C = (A == 0)
? new Complex(B, 0d).CubicRoots()
: ((B + Complex.Sqrt(B*B - 4*A*A*A))/2).CubicRoots();
return new Tuple(
s*(b + C.Item1 + A/C.Item1),
s*(b + C.Item2 + A/C.Item2),
s*(b + C.Item3 + A/C.Item3));
}
}
}