//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
public class BetaScaled : IContinuousDistribution
{
System.Random _random;
readonly double _shapeA;
readonly double _shapeB;
readonly double _location;
readonly double _scale;
///
/// Initializes a new instance of the BetaScaled class.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
public BetaScaled(double a, double b, double location, double scale)
{
if (!IsValidParameterSet(a, b, location, scale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_shapeA = a;
_shapeB = b;
_location = location;
_scale = scale;
}
///
/// Initializes a new instance of the BetaScaled class.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The random number generator which is used to draw random samples.
public BetaScaled(double a, double b, double location, double scale, System.Random randomSource)
{
if (!IsValidParameterSet(a, b, location, scale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_shapeA = a;
_shapeB = b;
_location = location;
_scale = scale;
}
///
/// Create a Beta PERT distribution, used in risk analysis and other domains where an expert forecast
/// is used to construct an underlying beta distribution.
///
/// The minimum value.
/// The maximum value.
/// The most likely value (mode).
/// The random number generator which is used to draw random samples.
/// The Beta distribution derived from the PERT parameters.
public static BetaScaled PERT(double min, double max, double likely, System.Random randomSource = null)
{
if (min > max || likely > max || likely < min)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// specified to make the formulas match the literature;
// traditionally set to 4 so that the range between min and max
// represents six standard deviations (sometimes called
// "the six-sigma assumption").
const double lambda = 4;
// calculate the mean
double mean = (min + max + lambda * likely) / (lambda + 2);
// derive the shape parameters a and b
double a;
// special case where mean and mode are identical
if (mean == likely)
{
a = (lambda / 2) + 1;
}
else
{
a = ((mean - min) * (2 * likely - min - max)) / ((likely - mean) * (max - min));
}
double b = (a * (max - mean)) / (mean - min);
return new BetaScaled(a, b, min, max - min, randomSource);
}
///
/// A string representation of the distribution.
///
/// A string representation of the BetaScaled distribution.
public override string ToString()
{
return $"BetaScaled(α = {_shapeA}, β = {_shapeB}, μ = {_location}, σ = {_scale})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
public static bool IsValidParameterSet(double a, double b, double location, double scale)
{
return a > 0.0 && b > 0.0 && scale > 0.0 && !double.IsNaN(location);
}
///
/// Gets the α shape parameter of the BetaScaled distribution. Range: α > 0.
///
public double A => _shapeA;
///
/// Gets the β shape parameter of the BetaScaled distribution. Range: β > 0.
///
public double B => _shapeB;
///
/// Gets the location (μ) of the BetaScaled distribution.
///
public double Location => _location;
///
/// Gets the scale (σ) of the BetaScaled distribution. Range: σ > 0.
///
public double Scale => _scale;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the BetaScaled distribution.
///
public double Mean
{
get
{
if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB))
{
return _location + 0.5 * _scale;
}
if (double.IsPositiveInfinity(_shapeA))
{
return _location + _scale;
}
if (double.IsPositiveInfinity(_shapeB))
{
return _location;
}
return (_shapeB*_location + _shapeA*(_location + _scale))/(_shapeA + _shapeB);
}
}
///
/// Gets the variance of the BetaScaled distribution.
///
public double Variance
{
get
{
double sum = _shapeA + _shapeB;
return (_shapeA*_shapeB*_scale*_scale)/(sum*sum*(1.0 + sum));
}
}
///
/// Gets the standard deviation of the BetaScaled distribution.
///
public double StdDev => Math.Sqrt(Variance);
///
/// Gets the entropy of the BetaScaled distribution.
///
public double Entropy => throw new NotSupportedException();
///
/// Gets the skewness of the BetaScaled distribution.
///
public double Skewness
{
get
{
if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB))
{
return 0.0;
}
if (double.IsPositiveInfinity(_shapeA))
{
return -2.0*_scale/Math.Sqrt(_shapeB*_scale*_scale);
}
if (double.IsPositiveInfinity(_shapeB))
{
return 2.0*_scale/Math.Sqrt(_shapeA*_scale*_scale);
}
double sum = _shapeA + _shapeB;
double variance = (_shapeA * _shapeB * _scale * _scale) / (sum * sum * (1.0 + sum));
return 2.0*(_shapeB - _shapeA)*_scale/(sum*(2.0 + sum)*Math.Sqrt(variance));
}
}
///
/// Gets the mode of the BetaScaled distribution; when there are multiple answers, this routine will return 0.5.
///
public double Mode
{
get
{
if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB))
{
return _location + 0.5 * _scale;
}
if (double.IsPositiveInfinity(_shapeA))
{
return _location + _scale;
}
if (double.IsPositiveInfinity(_shapeB))
{
return _location;
}
if (_shapeA == 1.0 && _shapeB == 1.0)
{
return _location + 0.5 * _scale;
}
return ((_shapeA - 1)/(_shapeA + _shapeB - 2))*_scale + _location;
}
}
///
/// Gets the median of the BetaScaled distribution.
///
public double Median => throw new NotSupportedException();
///
/// Gets the minimum of the BetaScaled distribution.
///
public double Minimum => _location;
///
/// Gets the maximum of the BetaScaled distribution.
///
public double Maximum => _location + _scale;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return PDF(_shapeA, _shapeB, _location, _scale, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return PDFLn(_shapeA, _shapeB, _location, _scale, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return CDF(_shapeA, _shapeB, _location, _scale, x);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public double InverseCumulativeDistribution(double p)
{
return InvCDF(_shapeA, _shapeB, _location, _scale, p);
}
///
/// Generates a sample from the distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, _shapeA, _shapeB, _location, _scale);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _shapeA, _shapeB, _location, _scale);
}
///
/// Generates a sequence of samples from the distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _shapeA, _shapeB, _location, _scale);
}
static double SampleUnchecked(System.Random rnd, double a, double b, double location, double scale)
{
return Beta.SampleUnchecked(rnd, a, b)*scale + location;
}
static void SamplesUnchecked(System.Random rnd, double[] values, double a, double b, double location, double scale)
{
Beta.SamplesUnchecked(rnd, values, a, b);
CommonParallel.For(0, values.Length, 4096, (aa, bb) =>
{
for (int i = aa; i < bb; i++)
{
values[i] = values[i]*scale + location;
}
});
}
static IEnumerable SamplesUnchecked(System.Random rnd, double a, double b, double location, double scale)
{
while (true)
{
yield return SampleUnchecked(rnd, a, b, location, scale);
}
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double a, double b, double location, double scale, double x)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Beta.PDF(a, b, (x - location)/scale)/Math.Abs(scale);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double a, double b, double location, double scale, double x)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Beta.PDFLn(a, b, (x - location)/scale) - Math.Log(Math.Abs(scale));
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public static double CDF(double a, double b, double location, double scale, double x)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Beta.CDF(a, b, (x - location) / scale);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public static double InvCDF(double a, double b, double location, double scale, double p)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Beta.InvCDF(a, b, p)*scale + location;
}
///
/// Generates a sample from the distribution.
///
/// The random number generator to use.
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double a, double b, double location, double scale)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, a, b, location, scale);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The random number generator to use.
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double a, double b, double location, double scale)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, a, b, location, scale);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double a, double b, double location, double scale)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, a, b, location, scale);
}
///
/// Generates a sample from the distribution.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sample from the distribution.
public static double Sample(double a, double b, double location, double scale)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, a, b, location, scale);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double a, double b, double location, double scale)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, a, b, location, scale);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The α shape parameter of the BetaScaled distribution. Range: α > 0.
/// The β shape parameter of the BetaScaled distribution. Range: β > 0.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double a, double b, double location, double scale)
{
if (!(a > 0.0 && b > 0.0 && scale > 0.0) || double.IsNaN(location))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, a, b, location, scale);
}
}
}