//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Chi distribution.
/// This distribution is a continuous probability distribution. The distribution usually arises when a k-dimensional vector's orthogonal
/// components are independent and each follow a standard normal distribution. The length of the vector will
/// then have a chi distribution.
/// Wikipedia - Chi distribution.
///
public class Chi : IContinuousDistribution
{
System.Random _random;
readonly double _freedom;
///
/// Initializes a new instance of the class.
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
public Chi(double freedom)
{
if (!IsValidParameterSet(freedom))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_freedom = freedom;
}
///
/// Initializes a new instance of the class.
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// The random number generator which is used to draw random samples.
public Chi(double freedom, System.Random randomSource)
{
if (!IsValidParameterSet(freedom))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_freedom = freedom;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"Chi(k = {_freedom})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
public static bool IsValidParameterSet(double freedom)
{
return freedom > 0.0;
}
///
/// Gets the degrees of freedom (k) of the Chi distribution. Range: k > 0.
///
public double DegreesOfFreedom => _freedom;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the distribution.
///
public double Mean => Constants.Sqrt2*(SpecialFunctions.Gamma((_freedom + 1.0)/2.0)/SpecialFunctions.Gamma(_freedom/2.0));
///
/// Gets the variance of the distribution.
///
public double Variance => _freedom - (Mean*Mean);
///
/// Gets the standard deviation of the distribution.
///
public double StdDev => Math.Sqrt(Variance);
///
/// Gets the entropy of the distribution.
///
public double Entropy => SpecialFunctions.GammaLn(_freedom/2.0) + ((_freedom - Math.Log(2) - ((_freedom - 1.0)*SpecialFunctions.DiGamma(_freedom/2.0)))/2.0);
///
/// Gets the skewness of the distribution.
///
public double Skewness
{
get
{
var sigma = StdDev;
return (Mean*(1.0 - (2.0*(sigma*sigma))))/(sigma*sigma*sigma);
}
}
///
/// Gets the mode of the distribution.
///
public double Mode
{
get
{
if (_freedom < 1)
{
throw new NotSupportedException();
}
return Math.Sqrt(_freedom - 1.0);
}
}
///
/// Gets the median of the distribution.
///
public double Median => throw new NotSupportedException();
///
/// Gets the minimum of the distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return PDF(_freedom, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return PDFLn(_freedom, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return CDF(_freedom, x);
}
///
/// Generates a sample from the Chi distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, (int)_freedom);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, (int)_freedom);
}
///
/// Generates a sequence of samples from the Chi distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, (int)_freedom);
}
///
/// Samples the distribution.
///
/// The random number generator to use.
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a random number from the distribution.
static double SampleUnchecked(System.Random rnd, int freedom)
{
double sum = 0;
for (var i = 0; i < freedom; i++)
{
sum += Math.Pow(Normal.Sample(rnd, 0.0, 1.0), 2);
}
return Math.Sqrt(sum);
}
static void SamplesUnchecked(System.Random rnd, double[] values, int freedom)
{
var standard = new double[values.Length*freedom];
Normal.SamplesUnchecked(rnd, standard, 0.0, 1.0);
CommonParallel.For(0, values.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
int k = i*freedom;
double sum = 0;
for (int j = 0; j < freedom; j++)
{
sum += standard[k + j]*standard[k + j];
}
values[i] = Math.Sqrt(sum);
}
});
}
static IEnumerable SamplesUnchecked(System.Random rnd, int freedom)
{
while (true)
{
yield return SampleUnchecked(rnd, freedom);
}
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double freedom, double x)
{
if (freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (double.IsPositiveInfinity(freedom) || double.IsPositiveInfinity(x) || x == 0.0)
{
return 0.0;
}
if (freedom > 160.0)
{
return Math.Exp(PDFLn(freedom, x));
}
return (Math.Pow(2.0, 1.0 - (freedom/2.0))*Math.Pow(x, freedom - 1.0)*Math.Exp(-x*x/2.0))/SpecialFunctions.Gamma(freedom/2.0);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double freedom, double x)
{
if (freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (double.IsPositiveInfinity(freedom) || double.IsPositiveInfinity(x) || x == 0.0)
{
return double.NegativeInfinity;
}
return ((1.0 - (freedom/2.0))*Math.Log(2.0)) + ((freedom - 1.0)*Math.Log(x)) - (x*x/2.0) - SpecialFunctions.GammaLn(freedom/2.0);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// the cumulative distribution at location .
///
public static double CDF(double freedom, double x)
{
if (freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (double.IsPositiveInfinity(x))
{
return 1.0;
}
if (double.IsPositiveInfinity(freedom))
{
return 1.0;
}
return SpecialFunctions.GammaLowerRegularized(freedom/2.0, x*x/2.0);
}
///
/// Generates a sample from the distribution.
///
/// The random number generator to use.
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, int freedom)
{
if (freedom <= 0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, freedom);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The random number generator to use.
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, int freedom)
{
if (freedom <= 0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, freedom);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, int freedom)
{
if (freedom <= 0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, freedom);
}
///
/// Generates a sample from the distribution.
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a sample from the distribution.
public static double Sample(int freedom)
{
if (freedom <= 0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, freedom);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(int freedom)
{
if (freedom <= 0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, freedom);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The degrees of freedom (k) of the distribution. Range: k > 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, int freedom)
{
if (freedom <= 0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, freedom);
}
}
}