// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using IStation.Numerics.LinearAlgebra; using IStation.Numerics.LinearAlgebra.Factorization; using IStation.Numerics.Random; namespace IStation.Numerics.Distributions { /// /// Multivariate Inverse Wishart distribution. This distribution is /// parameterized by the degrees of freedom nu and the scale matrix S. The inverse Wishart distribution /// is the conjugate prior for the covariance matrix of a multivariate normal distribution. /// Wikipedia - Inverse-Wishart distribution. /// public class InverseWishart : IDistribution { System.Random _random; readonly double _freedom; readonly Matrix _scale; /// /// Caches the Cholesky factorization of the scale matrix. /// readonly Cholesky _chol; /// /// Initializes a new instance of the class. /// /// The degree of freedom (ν) for the inverse Wishart distribution. /// The scale matrix (Ψ) for the inverse Wishart distribution. public InverseWishart(double degreesOfFreedom, Matrix scale) { if (Control.CheckDistributionParameters && !IsValidParameterSet(degreesOfFreedom, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _freedom = degreesOfFreedom; _scale = scale; _chol = _scale.Cholesky(); } /// /// Initializes a new instance of the class. /// /// The degree of freedom (ν) for the inverse Wishart distribution. /// The scale matrix (Ψ) for the inverse Wishart distribution. /// The random number generator which is used to draw random samples. public InverseWishart(double degreesOfFreedom, Matrix scale, System.Random randomSource) { if (Control.CheckDistributionParameters && !IsValidParameterSet(degreesOfFreedom, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _freedom = degreesOfFreedom; _scale = scale; _chol = _scale.Cholesky(); } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"InverseWishart(ν = {_freedom}, Rows = {_scale.RowCount}, Columns = {_scale.ColumnCount})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The degree of freedom (ν) for the inverse Wishart distribution. /// The scale matrix (Ψ) for the inverse Wishart distribution. public static bool IsValidParameterSet(double degreesOfFreedom, Matrix scale) { if (scale.RowCount != scale.ColumnCount) { return false; } for (var i = 0; i < scale.RowCount; i++) { if (scale.At(i, i) <= 0.0) { return false; } } return degreesOfFreedom > 0.0; } /// /// Gets or sets the degree of freedom (ν) for the inverse Wishart distribution. /// public double DegreesOfFreedom => _freedom; /// /// Gets or sets the scale matrix (Ψ) for the inverse Wishart distribution. /// public Matrix Scale => _scale; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean. /// /// The mean of the distribution. public Matrix Mean => _scale*(1.0/(_freedom - _scale.RowCount - 1.0)); /// /// Gets the mode of the distribution. /// /// The mode of the distribution. /// A. O'Hagan, and J. J. Forster (2004). Kendall's Advanced Theory of Statistics: Bayesian Inference. 2B (2 ed.). Arnold. ISBN 0-340-80752-0. public Matrix Mode => _scale*(1.0/(_freedom + _scale.RowCount + 1.0)); /// /// Gets the variance of the distribution. /// /// The variance of the distribution. /// Kanti V. Mardia, J. T. Kent and J. M. Bibby (1979). Multivariate Analysis. public Matrix Variance { get { return Matrix.Build.Dense(_scale.RowCount, _scale.ColumnCount, (i, j) => { var num1 = ((_freedom - _scale.RowCount + 1)*_scale.At(i, j)*_scale.At(i, j)) + ((_freedom - _scale.RowCount - 1)*_scale.At(i, i)*_scale.At(j, j)); var num2 = (_freedom - _scale.RowCount)*(_freedom - _scale.RowCount - 1)*(_freedom - _scale.RowCount - 1)*(_freedom - _scale.RowCount - 3); return num1/num2; }); } } /// /// Evaluates the probability density function for the inverse Wishart distribution. /// /// The matrix at which to evaluate the density at. /// If the argument does not have the same dimensions as the scale matrix. /// the density at . public double Density(Matrix x) { var p = _scale.RowCount; if (x.RowCount != p || x.ColumnCount != p) { throw new ArgumentOutOfRangeException(nameof(x), "Matrix dimensions must agree."); } var chol = x.Cholesky(); var dX = chol.Determinant; var sXi = chol.Solve(Scale); // Compute the multivariate Gamma function. var gp = Math.Pow(Constants.Pi, p*(p - 1.0)/4.0); for (var j = 1; j <= p; j++) { gp *= SpecialFunctions.Gamma((_freedom + 1.0 - j)/2.0); } return Math.Pow(dX, -(_freedom + p + 1.0)/2.0) *Math.Exp(-0.5*sXi.Trace()) *Math.Pow(_chol.Determinant, _freedom/2.0) /Math.Pow(2.0, _freedom*p/2.0) /gp; } /// /// Samples an inverse Wishart distributed random variable by sampling /// a Wishart random variable and inverting the matrix. /// /// a sample from the distribution. public Matrix Sample() { return Sample(_random, _freedom, _scale); } /// /// Samples an inverse Wishart distributed random variable by sampling /// a Wishart random variable and inverting the matrix. /// /// The random number generator to use. /// The degree of freedom (ν) for the inverse Wishart distribution. /// The scale matrix (Ψ) for the inverse Wishart distribution. /// a sample from the distribution. public static Matrix Sample(System.Random rnd, double degreesOfFreedom, Matrix scale) { if (Control.CheckDistributionParameters && !IsValidParameterSet(degreesOfFreedom, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var r = Wishart.Sample(rnd, degreesOfFreedom, scale.Inverse()); return r.PseudoInverse(); } } }