// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using System.Linq; using IStation.Numerics.Random; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Rayleigh distribution. /// The Rayleigh distribution (pronounced /ˈreɪli/) is a continuous probability distribution. As an /// example of how it arises, the wind speed will have a Rayleigh distribution if the components of /// the two-dimensional wind velocity vector are uncorrelated and normally distributed with equal variance. /// For details about this distribution, see /// Wikipedia - Rayleigh distribution. /// public class Rayleigh : IContinuousDistribution { System.Random _random; readonly double _scale; /// /// Initializes a new instance of the class. /// /// The scale (σ) of the distribution. Range: σ > 0. /// If is negative. public Rayleigh(double scale) { if (!IsValidParameterSet(scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _scale = scale; } /// /// Initializes a new instance of the class. /// /// The scale (σ) of the distribution. Range: σ > 0. /// The random number generator which is used to draw random samples. /// If is negative. public Rayleigh(double scale, System.Random randomSource) { if (!IsValidParameterSet(scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _scale = scale; } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"Rayleigh(σ = {_scale})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The scale (σ) of the distribution. Range: σ > 0. public static bool IsValidParameterSet(double scale) { return scale > 0.0; } /// /// Gets the scale (σ) of the distribution. Range: σ > 0. /// public double Scale => _scale; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the distribution. /// public double Mean => _scale*Math.Sqrt(Constants.PiOver2); /// /// Gets the variance of the distribution. /// public double Variance => (2.0 - Constants.PiOver2)*_scale*_scale; /// /// Gets the standard deviation of the distribution. /// public double StdDev => Math.Sqrt(2.0 - Constants.PiOver2)*_scale; /// /// Gets the entropy of the distribution. /// public double Entropy => 1.0 + Math.Log(_scale/Constants.Sqrt2) + (Constants.EulerMascheroni/2.0); /// /// Gets the skewness of the distribution. /// public double Skewness => (2.0*Math.Sqrt(Constants.Pi)*(Constants.Pi - 3.0))/Math.Pow(4.0 - Constants.Pi, 1.5); /// /// Gets the mode of the distribution. /// public double Mode => _scale; /// /// Gets the median of the distribution. /// public double Median => _scale*Math.Sqrt(Math.Log(4.0)); /// /// Gets the minimum of the distribution. /// public double Minimum => 0.0; /// /// Gets the maximum of the distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { return (x/(_scale*_scale))*Math.Exp(-x*x/(2.0*_scale*_scale)); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { return Math.Log(x/(_scale*_scale)) - (x*x/(2.0*_scale*_scale)); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return 1.0 - Math.Exp(-x*x/(2.0*_scale*_scale)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// public double InverseCumulativeDistribution(double p) { return _scale*Math.Sqrt(-2*Math.Log(1 - p)); } /// /// Draws a random sample from the distribution. /// /// A random number from this distribution. public double Sample() { return SampleUnchecked(_random, _scale); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _scale); } /// /// Generates a sequence of samples from the Rayleigh distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _scale); } static double SampleUnchecked(System.Random rnd, double scale) { return scale*Math.Sqrt(-2.0*Math.Log(rnd.NextDouble())); } static IEnumerable SamplesUnchecked(System.Random rnd, double scale) { return rnd.NextDoubleSequence().Select(x => scale*Math.Sqrt(-2.0*Math.Log(x))); } static void SamplesUnchecked(System.Random rnd, double[] values, double scale) { rnd.NextDoubles(values); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { values[i] = scale*Math.Sqrt(-2.0*Math.Log(values[i])); } }); } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The scale (σ) of the distribution. Range: σ > 0. /// The location at which to compute the density. /// the density at . /// public static double PDF(double scale, double x) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return (x/(scale*scale))*Math.Exp(-x*x/(2.0*scale*scale)); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The scale (σ) of the distribution. Range: σ > 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double scale, double x) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return Math.Log(x/(scale*scale)) - (x*x/(2.0*scale*scale)); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The scale (σ) of the distribution. Range: σ > 0. /// the cumulative distribution at location . /// public static double CDF(double scale, double x) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return 1.0 - Math.Exp(-x*x/(2.0*scale*scale)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// The scale (σ) of the distribution. Range: σ > 0. /// the inverse cumulative density at . /// public static double InvCDF(double scale, double p) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return scale*Math.Sqrt(-2*Math.Log(1 - p)); } /// /// Generates a sample from the distribution. /// /// The random number generator to use. /// The scale (σ) of the distribution. Range: σ > 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, scale); } /// /// Generates a sequence of samples from the distribution. /// /// The random number generator to use. /// The scale (σ) of the distribution. Range: σ > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, scale); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The scale (σ) of the distribution. Range: σ > 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, scale); } /// /// Generates a sample from the distribution. /// /// The scale (σ) of the distribution. Range: σ > 0. /// a sample from the distribution. public static double Sample(double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, scale); } /// /// Generates a sequence of samples from the distribution. /// /// The scale (σ) of the distribution. Range: σ > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, scale); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The scale (σ) of the distribution. Range: σ > 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, scale); } } }