//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using System.Linq;
using IStation.Numerics.Random;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Rayleigh distribution.
/// The Rayleigh distribution (pronounced /ˈreɪli/) is a continuous probability distribution. As an
/// example of how it arises, the wind speed will have a Rayleigh distribution if the components of
/// the two-dimensional wind velocity vector are uncorrelated and normally distributed with equal variance.
/// For details about this distribution, see
/// Wikipedia - Rayleigh distribution.
///
public class Rayleigh : IContinuousDistribution
{
System.Random _random;
readonly double _scale;
///
/// Initializes a new instance of the class.
///
/// The scale (σ) of the distribution. Range: σ > 0.
/// If is negative.
public Rayleigh(double scale)
{
if (!IsValidParameterSet(scale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_scale = scale;
}
///
/// Initializes a new instance of the class.
///
/// The scale (σ) of the distribution. Range: σ > 0.
/// The random number generator which is used to draw random samples.
/// If is negative.
public Rayleigh(double scale, System.Random randomSource)
{
if (!IsValidParameterSet(scale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_scale = scale;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"Rayleigh(σ = {_scale})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The scale (σ) of the distribution. Range: σ > 0.
public static bool IsValidParameterSet(double scale)
{
return scale > 0.0;
}
///
/// Gets the scale (σ) of the distribution. Range: σ > 0.
///
public double Scale => _scale;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the distribution.
///
public double Mean => _scale*Math.Sqrt(Constants.PiOver2);
///
/// Gets the variance of the distribution.
///
public double Variance => (2.0 - Constants.PiOver2)*_scale*_scale;
///
/// Gets the standard deviation of the distribution.
///
public double StdDev => Math.Sqrt(2.0 - Constants.PiOver2)*_scale;
///
/// Gets the entropy of the distribution.
///
public double Entropy => 1.0 + Math.Log(_scale/Constants.Sqrt2) + (Constants.EulerMascheroni/2.0);
///
/// Gets the skewness of the distribution.
///
public double Skewness => (2.0*Math.Sqrt(Constants.Pi)*(Constants.Pi - 3.0))/Math.Pow(4.0 - Constants.Pi, 1.5);
///
/// Gets the mode of the distribution.
///
public double Mode => _scale;
///
/// Gets the median of the distribution.
///
public double Median => _scale*Math.Sqrt(Math.Log(4.0));
///
/// Gets the minimum of the distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return (x/(_scale*_scale))*Math.Exp(-x*x/(2.0*_scale*_scale));
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return Math.Log(x/(_scale*_scale)) - (x*x/(2.0*_scale*_scale));
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return 1.0 - Math.Exp(-x*x/(2.0*_scale*_scale));
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
public double InverseCumulativeDistribution(double p)
{
return _scale*Math.Sqrt(-2*Math.Log(1 - p));
}
///
/// Draws a random sample from the distribution.
///
/// A random number from this distribution.
public double Sample()
{
return SampleUnchecked(_random, _scale);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _scale);
}
///
/// Generates a sequence of samples from the Rayleigh distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _scale);
}
static double SampleUnchecked(System.Random rnd, double scale)
{
return scale*Math.Sqrt(-2.0*Math.Log(rnd.NextDouble()));
}
static IEnumerable SamplesUnchecked(System.Random rnd, double scale)
{
return rnd.NextDoubleSequence().Select(x => scale*Math.Sqrt(-2.0*Math.Log(x)));
}
static void SamplesUnchecked(System.Random rnd, double[] values, double scale)
{
rnd.NextDoubles(values);
CommonParallel.For(0, values.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
values[i] = scale*Math.Sqrt(-2.0*Math.Log(values[i]));
}
});
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The scale (σ) of the distribution. Range: σ > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double scale, double x)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return (x/(scale*scale))*Math.Exp(-x*x/(2.0*scale*scale));
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The scale (σ) of the distribution. Range: σ > 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double scale, double x)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Math.Log(x/(scale*scale)) - (x*x/(2.0*scale*scale));
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The scale (σ) of the distribution. Range: σ > 0.
/// the cumulative distribution at location .
///
public static double CDF(double scale, double x)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return 1.0 - Math.Exp(-x*x/(2.0*scale*scale));
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// The scale (σ) of the distribution. Range: σ > 0.
/// the inverse cumulative density at .
///
public static double InvCDF(double scale, double p)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return scale*Math.Sqrt(-2*Math.Log(1 - p));
}
///
/// Generates a sample from the distribution.
///
/// The random number generator to use.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double scale)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, scale);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The random number generator to use.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double scale)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, scale);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double scale)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, scale);
}
///
/// Generates a sample from the distribution.
///
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sample from the distribution.
public static double Sample(double scale)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, scale);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double scale)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, scale);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The scale (σ) of the distribution. Range: σ > 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double scale)
{
if (scale <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, scale);
}
}
}