//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
using IStation.Numerics.RootFinding;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Student's T-distribution.
/// Implements the univariate Student t-distribution. For details about this
/// distribution, see
///
/// Wikipedia - Student's t-distribution.
///
/// We use a slightly generalized version (compared to
/// Wikipedia) of the Student t-distribution. Namely, one which also
/// parameterizes the location and scale. See the book "Bayesian Data
/// Analysis" by Gelman et al. for more details.
/// The density of the Student t-distribution p(x|mu,scale,dof) =
/// Gamma((dof+1)/2) (1 + (x - mu)^2 / (scale * scale * dof))^(-(dof+1)/2) /
/// (Gamma(dof/2)*Sqrt(dof*pi*scale)).
/// The distribution will use the by
/// default. Users can get/set the random number generator by using the
/// property.
/// The statistics classes will check all the incoming parameters
/// whether they are in the allowed range. This might involve heavy
/// computation. Optionally, by setting Control.CheckDistributionParameters
/// to false, all parameter checks can be turned off.
public class StudentT : IContinuousDistribution
{
System.Random _random;
readonly double _location;
readonly double _scale;
readonly double _freedom;
///
/// Initializes a new instance of the StudentT class. This is a Student t-distribution with location 0.0
/// scale 1.0 and degrees of freedom 1.
///
public StudentT()
{
_random = SystemRandomSource.Default;
_location = 0.0;
_scale = 1.0;
_freedom = 1.0;
}
///
/// Initializes a new instance of the StudentT class with a particular location, scale and degrees of
/// freedom.
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
public StudentT(double location, double scale, double freedom)
{
if (!IsValidParameterSet(location, scale, freedom))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_location = location;
_scale = scale;
_freedom = freedom;
}
///
/// Initializes a new instance of the StudentT class with a particular location, scale and degrees of
/// freedom.
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// The random number generator which is used to draw random samples.
public StudentT(double location, double scale, double freedom, System.Random randomSource)
{
if (!IsValidParameterSet(location, scale, freedom))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_location = location;
_scale = scale;
_freedom = freedom;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"StudentT(μ = {_location}, σ = {_scale}, ν = {_freedom})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
public static bool IsValidParameterSet(double location, double scale, double freedom)
{
return scale > 0.0 && freedom > 0.0 && !double.IsNaN(location);
}
///
/// Gets the location (μ) of the Student t-distribution.
///
public double Location => _location;
///
/// Gets the scale (σ) of the Student t-distribution. Range: σ > 0.
///
public double Scale => _scale;
///
/// Gets the degrees of freedom (ν) of the Student t-distribution. Range: ν > 0.
///
public double DegreesOfFreedom => _freedom;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the Student t-distribution.
///
public double Mean => _freedom > 1.0 ? _location : double.NaN;
///
/// Gets the variance of the Student t-distribution.
///
public double Variance
{
get
{
if (double.IsPositiveInfinity(_freedom))
{
return _scale*_scale;
}
if (_freedom > 2.0)
{
return _freedom*_scale*_scale/(_freedom - 2.0);
}
return _freedom > 1.0 ? double.PositiveInfinity : double.NaN;
}
}
///
/// Gets the standard deviation of the Student t-distribution.
///
public double StdDev
{
get
{
if (double.IsPositiveInfinity(_freedom))
{
return Math.Sqrt(_scale*_scale);
}
if (_freedom > 2.0)
{
return Math.Sqrt(_freedom*_scale*_scale/(_freedom - 2.0));
}
return _freedom > 1.0 ? double.PositiveInfinity : double.NaN;
}
}
///
/// Gets the entropy of the Student t-distribution.
///
public double Entropy
{
get
{
if (_location != 0 || _scale != 1.0)
{
throw new NotSupportedException();
}
return (((_freedom + 1.0)/2.0)*(SpecialFunctions.DiGamma((1.0 + _freedom)/2.0) - SpecialFunctions.DiGamma(_freedom/2.0)))
+ Math.Log(Math.Sqrt(_freedom)*SpecialFunctions.Beta(_freedom/2.0, 1.0/2.0));
}
}
///
/// Gets the skewness of the Student t-distribution.
///
public double Skewness
{
get
{
if (_freedom <= 3)
{
throw new NotSupportedException();
}
return 0.0;
}
}
///
/// Gets the mode of the Student t-distribution.
///
public double Mode => _location;
///
/// Gets the median of the Student t-distribution.
///
public double Median => _location;
///
/// Gets the minimum of the Student t-distribution.
///
public double Minimum => double.NegativeInfinity;
///
/// Gets the maximum of the Student t-distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
public double Density(double x)
{
return PDF(_location, _scale, _freedom, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
public double DensityLn(double x)
{
return PDFLn(_location, _scale, _freedom, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
public double CumulativeDistribution(double x)
{
return CDF(_location, _scale, _freedom, x);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public double InverseCumulativeDistribution(double p)
{
return InvCDF(_location, _scale, _freedom, p);
}
///
/// Samples student-t distributed random variables.
///
/// The algorithm is method 2 in section 5, chapter 9
/// in L. Devroye's "Non-Uniform Random Variate Generation"
/// The random number generator to use.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a random number from the standard student-t distribution.
static double SampleUnchecked(System.Random rnd, double location, double scale, double freedom)
{
var gamma = Gamma.SampleUnchecked(rnd, 0.5*freedom, 0.5);
return Normal.Sample(rnd, location, scale*Math.Sqrt(freedom/gamma));
}
static void SamplesUnchecked(System.Random rnd, double[] values, double location, double scale, double freedom)
{
Gamma.SamplesUnchecked(rnd, values, 0.5*freedom, 0.5);
for (int i = 0; i < values.Length; i++)
{
values[i] = Normal.Sample(rnd, location, scale*Math.Sqrt(freedom/values[i]));
}
}
static IEnumerable SamplesUnchecked(System.Random rnd, double location, double scale, double freedom)
{
while (true)
{
yield return SampleUnchecked(rnd, location, scale, freedom);
}
}
///
/// Generates a sample from the Student t-distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, _location, _scale, _freedom);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _location, _scale, _freedom);
}
///
/// Generates a sequence of samples from the Student t-distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _location, _scale, _freedom);
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double location, double scale, double freedom, double x)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// TODO JVG we can probably do a better job for Cauchy special case
if (freedom >= 1e+8d)
{
return Normal.PDF(location, scale, x);
}
var d = (x - location)/scale;
return Math.Exp(SpecialFunctions.GammaLn((freedom + 1.0)/2.0) - SpecialFunctions.GammaLn(freedom/2.0))
*Math.Pow(1.0 + (d*d/freedom), -0.5*(freedom + 1.0))
/Math.Sqrt(freedom*Math.PI)
/scale;
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double location, double scale, double freedom, double x)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// TODO JVG we can probably do a better job for Cauchy special case
if (freedom >= 1e+8d)
{
return Normal.PDFLn(location, scale, x);
}
var d = (x - location)/scale;
return SpecialFunctions.GammaLn((freedom + 1.0)/2.0)
- (0.5*((freedom + 1.0)*Math.Log(1.0 + (d*d/freedom))))
- SpecialFunctions.GammaLn(freedom/2.0)
- (0.5*Math.Log(freedom*Math.PI)) - Math.Log(scale);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// the cumulative distribution at location .
///
public static double CDF(double location, double scale, double freedom, double x)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// TODO JVG we can probably do a better job for Cauchy special case
if (double.IsPositiveInfinity(freedom))
{
return Normal.CDF(location, scale, x);
}
var k = (x - location)/scale;
var h = freedom/(freedom + (k*k));
var ib = 0.5*SpecialFunctions.BetaRegularized(freedom/2.0, 0.5, h);
return x <= location ? ib : 1.0 - ib;
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public static double InvCDF(double location, double scale, double freedom, double p)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
// TODO JVG we can probably do a better job for Cauchy special case
if (double.IsPositiveInfinity(freedom))
{
return Normal.InvCDF(location, scale, p);
}
if (p == 0.5d)
{
return location;
}
// TODO PERF: We must implement this explicitly instead of solving for CDF^-1
return Brent.FindRoot(x =>
{
var k = (x - location)/scale;
var h = freedom/(freedom + (k*k));
var ib = 0.5*SpecialFunctions.BetaRegularized(freedom/2.0, 0.5, h);
return x <= location ? ib - p : 1.0 - ib - p;
}, -800, 800, accuracy: 1e-12);
}
///
/// Generates a sample from the Student t-distribution.
///
/// The random number generator to use.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double location, double scale, double freedom)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, location, scale, freedom);
}
///
/// Generates a sequence of samples from the Student t-distribution using the Box-Muller algorithm.
///
/// The random number generator to use.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double location, double scale, double freedom)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, location, scale, freedom);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double location, double scale, double freedom)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, location, scale, freedom);
}
///
/// Generates a sample from the Student t-distribution.
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a sample from the distribution.
public static double Sample(double location, double scale, double freedom)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, location, scale, freedom);
}
///
/// Generates a sequence of samples from the Student t-distribution using the Box-Muller algorithm.
///
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double location, double scale, double freedom)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, location, scale, freedom);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The location (μ) of the distribution.
/// The scale (σ) of the distribution. Range: σ > 0.
/// The degrees of freedom (ν) for the distribution. Range: ν > 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double location, double scale, double freedom)
{
if (scale <= 0.0 || freedom <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, location, scale, freedom);
}
}
}