// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2019 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using IStation.Numerics.Random; using System; using System.Collections.Generic; namespace IStation.Numerics.Distributions { public class TruncatedPareto : IContinuousDistribution { System.Random _random; /// /// Initializes a new instance of the TruncatedPareto class. /// /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// The random number generator which is used to draw random samples. /// If or are non-positive or if T ≤ xm. public TruncatedPareto(double scale, double shape, double truncation, System.Random randomSource = null) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; Scale = scale; Shape = shape; Truncation = truncation; } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"Truncated Pareto(Scale = {Scale}, Shape = {Shape}, Truncation = {Truncation})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. public static bool IsValidParameterSet(double scale, double shape, double truncation) { var allFinite = scale.IsFinite() && shape.IsFinite() && truncation.IsFinite(); return allFinite && scale > 0.0 && shape > 0.0 && truncation > scale; } /// /// Gets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the scale (xm) of the distribution. Range: xm > 0. /// public double Scale { get; } /// /// Gets the shape (α) of the distribution. Range: α > 0. /// public double Shape { get; } /// /// Gets the truncation (T) of the distribution. Range: T > 0. /// public double Truncation { get; } /// /// Gets the n-th raw moment of the distribution. /// /// The order (n) of the moment. Range: n ≥ 1. /// the n-th moment of the distribution. public double GetMoment(int n) { double moment; if (Shape.AlmostEqual(n)) { moment = ((Shape * Math.Pow(Scale, n)) / (1 - Math.Pow(Scale / Truncation, Shape))) * Math.Log(Truncation / Scale); } else { moment = ((Shape * Math.Pow(Scale, n)) / (Shape - n)) * ((1 - Math.Pow((Scale / Truncation), (Shape - n))) / (1 - Math.Pow(Scale / Truncation, Shape))); } return moment; } /// /// Gets the mean of the truncated Pareto distribution. /// public double Mean => GetMoment(1); /// /// Gets the variance of the truncated Pareto distribution. /// public double Variance => GetMoment(2) - Math.Pow(GetMoment(1), 2); /// /// Gets the standard deviation of the truncated Pareto distribution. /// public double StdDev => Math.Sqrt(Variance); /// /// Gets the mode of the truncated Pareto distribution (not supported). /// public double Mode => throw new NotSupportedException(); /// /// Gets the minimum of the truncated Pareto distribution. /// public double Minimum => Scale; /// /// Gets the maximum of the truncated Pareto distribution. /// public double Maximum => Truncation; /// /// Gets the entropy of the truncated Pareto distribution (not supported). /// public double Entropy => throw new NotSupportedException(); /// /// Gets the skewness of the truncated Pareto distribution. /// public double Skewness { get { var mean = Mean; var variance = Variance; var std = StdDev; return (GetMoment(3) - 3.0 * mean * variance - mean * mean * mean) / (std * std * std); } } /// /// Gets the median of the truncated Pareto distribution. /// public double Median => Scale * Math.Pow(1.0 - (1.0 / 2.0) * (1.0 - Math.Pow(Scale / Truncation, Shape)), -(1.0 / Shape)); /// /// Generates a sample from the truncated Pareto distribution. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, Scale, Shape, Truncation); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. public void Samples(double[] values) { SamplesUnchecked(_random, values, Scale, Shape, Truncation); } /// /// Generates a sequence of samples from the truncated Pareto distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, Scale, Shape, Truncation); } /// /// Generates a sample from the truncated Pareto distribution. /// /// The random number generator to use. /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// a sample from the distribution. public static double Sample(System.Random rnd, double scale, double shape, double truncation) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, scale, shape, truncation); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. public static void Samples(System.Random rnd, double[] values, double scale, double shape, double truncation) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, scale, shape, truncation); } /// /// Generates a sequence of samples from the truncated Pareto distribution. /// /// The random number generator to use. /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double scale, double shape, double truncation) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, scale, shape, truncation); } internal static double SampleUnchecked(System.Random rnd, double scale, double shape, double truncation) { double uniform = rnd.NextDouble(); return InvCDFUncheckedImpl(scale, shape, truncation, uniform); } internal static void SamplesUnchecked(System.Random rnd, double[] values, double scale, double shape, double truncation) { if (values.Length == 0) { return; } double[] uniforms = rnd.NextDoubles(values.Length); for (var j = 0; j < values.Length; ++j) { values[j] = InvCDFUncheckedImpl(scale, shape, truncation, uniforms[j]); } } internal static IEnumerable SamplesUnchecked(System.Random rnd, double scale, double shape, double truncation) { while (true) { yield return SampleUnchecked(rnd, scale, shape, truncation); } } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { return DensityImpl(Scale, Shape, Truncation, x); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { return DensityLnImpl(Scale, Shape, Truncation, x); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return CumulativeDistributionImpl(Scale, Shape, Truncation, x); } /// /// Computes the inverse cumulative distribution (CDF) of the distribution at p, i.e. solving for P(X ≤ x) = p. /// /// The location at which to compute the inverse cumulative distribution function. /// the inverse cumulative distribution at location . public double InvCDF(double p) { return InvCDFUncheckedImpl(Scale, Shape, Truncation, p); } /// /// Computes the inverse cumulative distribution (CDF) of the distribution at p, i.e. solving for P(X ≤ x) = p. /// /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// The location at which to compute the inverse cumulative distribution function. /// the inverse cumulative distribution at location . /// public static double ICDF(double scale, double shape, double truncation, double p) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return InvCDFUncheckedImpl(scale, shape, truncation, p); } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// The location at which to compute the density. /// the density at . /// public static double PDF(double scale, double shape, double truncation, double x) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return DensityImpl(scale, shape, truncation, x); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// The location at which to compute the log density. /// the log density at . /// public static double PDFLn(double scale, double shape, double truncation, double x) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return DensityLnImpl(scale, shape, truncation, x); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The scale (xm) of the distribution. Range: xm > 0. /// The shape (α) of the distribution. Range: α > 0. /// The truncation (T) of the distribution. Range: T > xm. /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public static double CDF(double scale, double shape, double truncation, double x) { if (!IsValidParameterSet(scale, shape, truncation)) { throw new ArgumentException("Invalid parametrization for the distribution."); } return CumulativeDistributionImpl(scale, shape, truncation, x); } internal static double DensityImpl(double scale, double shape, double truncation, double x) { if (x < scale || x > truncation) return 0; else return (shape * Math.Pow(scale, shape) * Math.Pow(x, -shape - 1)) / (1 - Math.Pow(scale / truncation, shape)); } internal static double DensityLnImpl(double scale, double shape, double truncation, double x) { return Math.Log(DensityImpl(scale, shape, truncation, x)); } internal static double CumulativeDistributionImpl(double scale, double shape, double truncation, double x) { if (x <= scale) return 0; else if (x >= truncation) return 1; else return (1 - Math.Pow(scale, shape) * Math.Pow(x, -shape)) / (1 - Math.Pow(scale / truncation, shape)); } internal static double InvCDFUncheckedImpl(double scale, double shape, double truncation, double p) { var numerator = p * Math.Pow(truncation, shape) - p * Math.Pow(scale, shape) - Math.Pow(truncation, shape); var denominator = Math.Pow(truncation, shape) * Math.Pow(scale, shape); return Math.Pow(-numerator / denominator, -(1 / shape)); } } }