using Complex = System.Numerics.Complex; namespace IStation.Numerics { /// /// This partial implementation of the SpecialFunctions class contains all methods related to the Hankel function. /// public static partial class SpecialFunctions { /// /// Returns the Hankel function of the first kind. /// HankelH1(n, z) is defined as BesselJ(n, z) + j * BesselY(n, z). /// /// The order of the Hankel function. /// The value to compute the Hankel function of. /// The Hankel function of the first kind. public static Complex HankelH1(double n, Complex z) { return Amos.Cbesh1(n, z); } /// /// Returns the exponentially scaled Hankel function of the first kind. /// ScaledHankelH1(n, z) is given by Exp(-z * j) * HankelH1(n, z) where j = Sqrt(-1). /// /// The order of the Hankel function. /// The value to compute the Hankel function of. /// The exponentially scaled Hankel function of the first kind. public static Complex HankelH1Scaled(double n, Complex z) { return Amos.ScaledCbesh1(n, z); } /// /// Returns the Hankel function of the second kind. /// HankelH2(n, z) is defined as BesselJ(n, z) - j * BesselY(n, z). /// /// The order of the Hankel function. /// The value to compute the Hankel function of. /// The Hankel function of the second kind. public static Complex HankelH2(double n, Complex z) { return Amos.Cbesh2(n, z); } /// /// Returns the exponentially scaled Hankel function of the second kind. /// ScaledHankelH2(n, z) is given by Exp(z * j) * HankelH2(n, z) where j = Sqrt(-1). /// /// The order of the Hankel function. /// The value to compute the Hankel function of. /// The exponentially scaled Hankel function of the second kind. public static Complex HankelH2Scaled(double n, Complex z) { return Amos.ScaledCbesh2(n, z); } } }