// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2019 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // // This file uses code from the Boost Project. // Copyright John Maddock 2017. // Copyright Nick Thompson 2017. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // https://github.com/boostorg/math/blob/develop/include/boost/math/quadrature/gauss_kronrod.hpp using IStation.Numerics.Integration.GaussRule; using System; using System.Numerics; namespace IStation.Numerics.Integration { public class GaussKronrodRule { private readonly GaussPointPair gaussKronrodPoint; /// /// Getter for the order. /// public int Order => gaussKronrodPoint.Order; /// /// Getter that returns a clone of the array containing the Kronrod abscissas. /// public double[] KronrodAbscissas => gaussKronrodPoint.Abscissas.Clone() as double[]; /// /// Getter that returns a clone of the array containing the Kronrod weights. /// public double[] KronrodWeights => gaussKronrodPoint.Weights.Clone() as double[]; /// /// Getter that returns a clone of the array containing the Gauss weights. /// public double[] GaussWeights => gaussKronrodPoint.SecondWeights.Clone() as double[]; public GaussKronrodRule(int order) { gaussKronrodPoint = GaussKronrodPointFactory.GetGaussPoint(order); } /// /// Performs adaptive Gauss-Kronrod quadrature on function f over the range (a,b) /// /// The analytic smooth function to integrate /// Where the interval starts /// Where the interval stops /// The difference between the (N-1)/2 point Gauss approximation and the N-point Gauss-Kronrod approximation /// The L1 norm of the result, if there is a significant difference between this and the returned value, then the result is likely to be ill-conditioned. /// The maximum relative error in the result /// The maximum number of interval splittings permitted before stopping /// The number of Gauss-Kronrod points. Pre-computed for 15, 21, 31, 41, 51 and 61 points public static double Integrate(Func f, double intervalBegin, double intervalEnd, out double error, out double L1Norm, double targetRelativeError = 1E-10, int maximumDepth = 15, int order = 15) { // Formula used for variable subsitution from // 1. Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140. // 2. quadgk.m, GNU Octave if (f == null) { throw new ArgumentNullException(nameof(f)); } if (intervalBegin > intervalEnd) { return -Integrate(f, intervalEnd, intervalBegin, out error, out L1Norm, targetRelativeError, maximumDepth, order); } GaussPointPair gaussKronrodPoint = GaussKronrodPointFactory.GetGaussPoint(order); // (-oo, oo) => [-1, 1] // // integral_(-oo)^(oo) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt // g(t) = t / (1 - t^2) // g'(t) = (1 + t^2) / (1 - t^2)^2 if ((intervalBegin < double.MinValue) && (intervalEnd > double.MaxValue)) { Func u = (t) => { return f(t / (1 - t * t)) * (1 + t * t) / ((1 - t * t) * (1 - t * t)); }; return recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint); } // [a, oo) => [0, 1] // // integral_(a)^(oo) f(x) dx = integral_(0)^(oo) f(a + t^2) 2 t dt // = integral_(0)^(1) f(a + g(s)^2) 2 g(s) g'(s) ds // g(s) = s / (1 - s) // g'(s) = 1 / (1 - s)^2 else if (intervalEnd > double.MaxValue) { Func u = (s) => { return 2 * s * f(intervalBegin + (s / (1 - s)) * (s / (1 - s))) / ((1 - s) * (1 - s) * (1 - s)); }; return recursive_adaptive_integrate(u, 0, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint); } // (-oo, b] => [-1, 0] // // integral_(-oo)^(b) f(x) dx = -integral_(-oo)^(0) f(b - t^2) 2 t dt // = -integral_(-1)^(0) f(b - g(s)^2) 2 g(s) g'(s) ds // g(s) = s / (1 + s) // g'(s) = 1 / (1 + s)^2 else if (intervalBegin < double.MinValue) { Func u = (s) => { return -2 * s * f(intervalEnd - s / (1 + s) * (s / (1 + s))) / ((1 + s) * (1 + s) * (1 + s)); }; return recursive_adaptive_integrate(u, -1, 0, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint); } // [a, b] => [-1, 1] // // integral_(a)^(b) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt // g(t) = (b - a) * t * (3 - t^2) / 4 + (b + a) / 2 // g'(t) = 3 / 4 * (b - a) * (1 - t^2) else { Func u = (t) => { return f((intervalEnd - intervalBegin) / 4 * t * (3 - t * t) + (intervalEnd + intervalBegin) / 2) * 3 * (intervalEnd - intervalBegin) / 4 * (1 - t * t); }; return recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0d, out error, out L1Norm, gaussKronrodPoint); } } /// /// Performs adaptive Gauss-Kronrod quadrature on function f over the range (a,b) /// /// The analytic smooth complex function to integrate, defined on the real axis. /// Where the interval starts /// Where the interval stops /// The difference between the (N-1)/2 point Gauss approximation and the N-point Gauss-Kronrod approximation /// The L1 norm of the result, if there is a significant difference between this and the returned value, then the result is likely to be ill-conditioned. /// The maximum relative error in the result /// The maximum number of interval splittings permitted before stopping /// The number of Gauss-Kronrod points. Pre-computed for 15, 21, 31, 41, 51 and 61 points /// public static Complex ContourIntegrate(Func f, double intervalBegin, double intervalEnd, out double error, out double L1Norm, double targetRelativeError = 1E-10, int maximumDepth = 15, int order = 15) { // Formula used for variable subsitution from // 1. Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140. // 2. quadgk.m, GNU Octave if (f == null) { throw new ArgumentNullException(nameof(f)); } if (intervalBegin > intervalEnd) { return -ContourIntegrate(f, intervalEnd, intervalBegin, out error, out L1Norm, targetRelativeError, maximumDepth, order); } GaussPointPair gaussKronrodPoint = GaussKronrodPointFactory.GetGaussPoint(order); // (-oo, oo) => [-1, 1] // // integral_(-oo)^(oo) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt // g(t) = t / (1 - t^2) // g'(t) = (1 + t^2) / (1 - t^2)^2 if ((intervalBegin < double.MinValue) && (intervalEnd > double.MaxValue)) { Func u = (t) => { return f(t / (1 - t * t)) * (1 + t * t) / ((1 - t * t) * (1 - t * t)); }; return contour_recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint); } // [a, oo) => [0, 1] // // integral_(a)^(oo) f(x) dx = integral_(0)^(oo) f(a + t^2) 2 t dt // = integral_(0)^(1) f(a + g(s)^2) 2 g(s) g'(s) ds // g(s) = s / (1 - s) // g'(s) = 1 / (1 - s)^2 else if (intervalEnd > double.MaxValue) { Func u = (s) => { return 2 * s * f(intervalBegin + (s / (1 - s)) * (s / (1 - s))) / ((1 - s) * (1 - s) * (1 - s)); }; return contour_recursive_adaptive_integrate(u, 0, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint); } // (-oo, b] => [-1, 0] // // integral_(-oo)^(b) f(x) dx = -integral_(-oo)^(0) f(b - t^2) 2 t dt // = -integral_(-1)^(0) f(b - g(s)^2) 2 g(s) g'(s) ds // g(s) = s / (1 + s) // g'(s) = 1 / (1 + s)^2 else if (intervalBegin < double.MinValue) { Func u = (s) => { return -2 * s * f(intervalEnd - s / (1 + s) * (s / (1 + s))) / ((1 + s) * (1 + s) * (1 + s)); }; return contour_recursive_adaptive_integrate(u, -1, 0, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint); } // [a, b] => [-1, 1] // // integral_(a)^(b) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt // g(t) = (b - a) * t * (3 - t^2) / 4 + (b + a) / 2 // g'(t) = 3 / 4 * (b - a) * (1 - t^2) else { Func u = (t) => { return f((intervalEnd - intervalBegin) / 4 * t * (3 - t * t) + (intervalEnd + intervalBegin) / 2) * 3 * (intervalEnd - intervalBegin) / 4 * (1 - t * t); }; return contour_recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0d, out error, out L1Norm, gaussKronrodPoint); } } private static double integrate_non_adaptive_m1_1(Func f, out double error, out double pL1, GaussPointPair gaussKronrodPoint) { int gauss_start = 2; int kronrod_start = 1; int gauss_order = (gaussKronrodPoint.Order - 1) / 2; double kronrod_result = 0d; double gauss_result = 0d; double fp, fm; var KAbscissa = gaussKronrodPoint.Abscissas; var KWeights = gaussKronrodPoint.Weights; var GWeights = gaussKronrodPoint.SecondWeights; if ((gauss_order & 1) == 1) { fp = f(0); kronrod_result = fp * KWeights[0]; gauss_result += fp * GWeights[0]; } else { fp = f(0); kronrod_result = fp * KWeights[0]; gauss_start = 1; kronrod_start = 2; } double L1 = Math.Abs(kronrod_result); for (int i = gauss_start; i < KAbscissa.Length; i += 2) { fp = f(KAbscissa[i]); fm = f(-KAbscissa[i]); kronrod_result += (fp + fm) * KWeights[i]; L1 += (Math.Abs(fp) + Math.Abs(fm)) * KWeights[i]; gauss_result += (fp + fm) * GWeights[i / 2]; } for (int i = kronrod_start; i < KAbscissa.Length; i += 2) { fp = f(KAbscissa[i]); fm = f(-KAbscissa[i]); kronrod_result += (fp + fm) * KWeights[i]; L1 += (Math.Abs(fp) + Math.Abs(fm)) * KWeights[i]; } pL1 = L1; error = Math.Max(Math.Abs(kronrod_result - gauss_result), Math.Abs(kronrod_result * Precision.MachineEpsilon * 2d)); return kronrod_result; } private static Complex contour_integrate_non_adaptive_m1_1(Func f, out double error, out double pL1, GaussPointPair gaussKronrodPoint) { int gauss_start = 2; int kronrod_start = 1; int gauss_order = (gaussKronrodPoint.Order - 1) / 2; Complex kronrod_result = new Complex(); Complex gauss_result = new Complex(); Complex fp, fm; var KAbscissa = gaussKronrodPoint.Abscissas; var KWeights = gaussKronrodPoint.Weights; var GWeights = gaussKronrodPoint.SecondWeights; if (gauss_order.IsOdd()) { fp = f(0); kronrod_result = fp * KWeights[0]; gauss_result += fp * GWeights[0]; } else { fp = f(0); kronrod_result = fp * KWeights[0]; gauss_start = 1; kronrod_start = 2; } double L1 = Complex.Abs(kronrod_result); for (int i = gauss_start; i < KAbscissa.Length; i += 2) { fp = f(KAbscissa[i]); fm = f(-KAbscissa[i]); kronrod_result += (fp + fm) * KWeights[i]; L1 += (Complex.Abs(fp) + Complex.Abs(fm)) * KWeights[i]; gauss_result += (fp + fm) * GWeights[i / 2]; } for (int i = kronrod_start; i < KAbscissa.Length; i += 2) { fp = f(KAbscissa[i]); fm = f(-KAbscissa[i]); kronrod_result += (fp + fm) * KWeights[i]; L1 += (Complex.Abs(fp) + Complex.Abs(fm)) * KWeights[i]; } pL1 = L1; error = Math.Max(Complex.Abs(kronrod_result - gauss_result), Complex.Abs(kronrod_result * Precision.MachineEpsilon * 2d)); return kronrod_result; } private static double recursive_adaptive_integrate(Func f, double a, double b, int max_levels, double rel_tol, double abs_tol, out double error, out double L1, GaussPointPair gaussKronrodPoint) { double error_local; double mean = (b + a) / 2; double scale = (b - a) / 2; var r1 = integrate_non_adaptive_m1_1((x) => f(scale * x + mean), out error_local, out L1, gaussKronrodPoint); var estimate = scale * r1; var tmp = estimate * rel_tol; var abs_tol1 = Math.Abs(tmp); if (abs_tol == 0) { abs_tol = abs_tol1; } if (max_levels > 0 && (abs_tol1 < error_local) && (abs_tol < error_local)) { double mid = (a + b) / 2d; double L1_local; estimate = recursive_adaptive_integrate(f, a, mid, max_levels - 1, rel_tol, abs_tol / 2, out error, out L1, gaussKronrodPoint); estimate += recursive_adaptive_integrate(f, mid, b, max_levels - 1, rel_tol, abs_tol / 2, out error_local, out L1_local, gaussKronrodPoint); error += error_local; L1 += L1_local; return estimate; } L1 *= scale; error = error_local; return estimate; } private static Complex contour_recursive_adaptive_integrate(Func f, double a, double b, int max_levels, double rel_tol, double abs_tol, out double error, out double L1, GaussPointPair gaussKronrodPoint) { double error_local; double mean = (b + a) / 2; double scale = (b - a) / 2; var r1 = contour_integrate_non_adaptive_m1_1((x) => f(scale * x + mean), out error_local, out L1, gaussKronrodPoint); var estimate = scale * r1; var tmp = estimate * rel_tol; var abs_tol1 = Complex.Abs(tmp); if (abs_tol == 0) { abs_tol = abs_tol1; } if (max_levels > 0 && (abs_tol1 < error_local) && (abs_tol < error_local)) { double mid = (a + b) / 2d; double L1_local; estimate = contour_recursive_adaptive_integrate(f, a, mid, max_levels - 1, rel_tol, abs_tol / 2, out error, out L1, gaussKronrodPoint); estimate += contour_recursive_adaptive_integrate(f, mid, b, max_levels - 1, rel_tol, abs_tol / 2, out error_local, out L1_local, gaussKronrodPoint); error += error_local; L1 += L1_local; return estimate; } L1 *= scale; error = error_local; return estimate; } } }