//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2019 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// This file uses code from the Boost Project.
// Copyright John Maddock 2017.
// Copyright Nick Thompson 2017.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// https://github.com/boostorg/math/blob/develop/include/boost/math/quadrature/gauss_kronrod.hpp
using IStation.Numerics.Integration.GaussRule;
using System;
using System.Numerics;
namespace IStation.Numerics.Integration
{
public class GaussKronrodRule
{
private readonly GaussPointPair gaussKronrodPoint;
///
/// Getter for the order.
///
public int Order => gaussKronrodPoint.Order;
///
/// Getter that returns a clone of the array containing the Kronrod abscissas.
///
public double[] KronrodAbscissas => gaussKronrodPoint.Abscissas.Clone() as double[];
///
/// Getter that returns a clone of the array containing the Kronrod weights.
///
public double[] KronrodWeights => gaussKronrodPoint.Weights.Clone() as double[];
///
/// Getter that returns a clone of the array containing the Gauss weights.
///
public double[] GaussWeights => gaussKronrodPoint.SecondWeights.Clone() as double[];
public GaussKronrodRule(int order)
{
gaussKronrodPoint = GaussKronrodPointFactory.GetGaussPoint(order);
}
///
/// Performs adaptive Gauss-Kronrod quadrature on function f over the range (a,b)
///
/// The analytic smooth function to integrate
/// Where the interval starts
/// Where the interval stops
/// The difference between the (N-1)/2 point Gauss approximation and the N-point Gauss-Kronrod approximation
/// The L1 norm of the result, if there is a significant difference between this and the returned value, then the result is likely to be ill-conditioned.
/// The maximum relative error in the result
/// The maximum number of interval splittings permitted before stopping
/// The number of Gauss-Kronrod points. Pre-computed for 15, 21, 31, 41, 51 and 61 points
public static double Integrate(Func f, double intervalBegin, double intervalEnd, out double error, out double L1Norm, double targetRelativeError = 1E-10, int maximumDepth = 15, int order = 15)
{
// Formula used for variable subsitution from
// 1. Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140.
// 2. quadgk.m, GNU Octave
if (f == null)
{
throw new ArgumentNullException(nameof(f));
}
if (intervalBegin > intervalEnd)
{
return -Integrate(f, intervalEnd, intervalBegin, out error, out L1Norm, targetRelativeError, maximumDepth, order);
}
GaussPointPair gaussKronrodPoint = GaussKronrodPointFactory.GetGaussPoint(order);
// (-oo, oo) => [-1, 1]
//
// integral_(-oo)^(oo) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt
// g(t) = t / (1 - t^2)
// g'(t) = (1 + t^2) / (1 - t^2)^2
if ((intervalBegin < double.MinValue) && (intervalEnd > double.MaxValue))
{
Func u = (t) =>
{
return f(t / (1 - t * t)) * (1 + t * t) / ((1 - t * t) * (1 - t * t));
};
return recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint);
}
// [a, oo) => [0, 1]
//
// integral_(a)^(oo) f(x) dx = integral_(0)^(oo) f(a + t^2) 2 t dt
// = integral_(0)^(1) f(a + g(s)^2) 2 g(s) g'(s) ds
// g(s) = s / (1 - s)
// g'(s) = 1 / (1 - s)^2
else if (intervalEnd > double.MaxValue)
{
Func u = (s) =>
{
return 2 * s * f(intervalBegin + (s / (1 - s)) * (s / (1 - s))) / ((1 - s) * (1 - s) * (1 - s));
};
return recursive_adaptive_integrate(u, 0, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint);
}
// (-oo, b] => [-1, 0]
//
// integral_(-oo)^(b) f(x) dx = -integral_(-oo)^(0) f(b - t^2) 2 t dt
// = -integral_(-1)^(0) f(b - g(s)^2) 2 g(s) g'(s) ds
// g(s) = s / (1 + s)
// g'(s) = 1 / (1 + s)^2
else if (intervalBegin < double.MinValue)
{
Func u = (s) =>
{
return -2 * s * f(intervalEnd - s / (1 + s) * (s / (1 + s))) / ((1 + s) * (1 + s) * (1 + s));
};
return recursive_adaptive_integrate(u, -1, 0, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint);
}
// [a, b] => [-1, 1]
//
// integral_(a)^(b) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt
// g(t) = (b - a) * t * (3 - t^2) / 4 + (b + a) / 2
// g'(t) = 3 / 4 * (b - a) * (1 - t^2)
else
{
Func u = (t) =>
{
return f((intervalEnd - intervalBegin) / 4 * t * (3 - t * t) + (intervalEnd + intervalBegin) / 2) * 3 * (intervalEnd - intervalBegin) / 4 * (1 - t * t);
};
return recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0d, out error, out L1Norm, gaussKronrodPoint);
}
}
///
/// Performs adaptive Gauss-Kronrod quadrature on function f over the range (a,b)
///
/// The analytic smooth complex function to integrate, defined on the real axis.
/// Where the interval starts
/// Where the interval stops
/// The difference between the (N-1)/2 point Gauss approximation and the N-point Gauss-Kronrod approximation
/// The L1 norm of the result, if there is a significant difference between this and the returned value, then the result is likely to be ill-conditioned.
/// The maximum relative error in the result
/// The maximum number of interval splittings permitted before stopping
/// The number of Gauss-Kronrod points. Pre-computed for 15, 21, 31, 41, 51 and 61 points
///
public static Complex ContourIntegrate(Func f, double intervalBegin, double intervalEnd, out double error, out double L1Norm, double targetRelativeError = 1E-10, int maximumDepth = 15, int order = 15)
{
// Formula used for variable subsitution from
// 1. Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140.
// 2. quadgk.m, GNU Octave
if (f == null)
{
throw new ArgumentNullException(nameof(f));
}
if (intervalBegin > intervalEnd)
{
return -ContourIntegrate(f, intervalEnd, intervalBegin, out error, out L1Norm, targetRelativeError, maximumDepth, order);
}
GaussPointPair gaussKronrodPoint = GaussKronrodPointFactory.GetGaussPoint(order);
// (-oo, oo) => [-1, 1]
//
// integral_(-oo)^(oo) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt
// g(t) = t / (1 - t^2)
// g'(t) = (1 + t^2) / (1 - t^2)^2
if ((intervalBegin < double.MinValue) && (intervalEnd > double.MaxValue))
{
Func u = (t) =>
{
return f(t / (1 - t * t)) * (1 + t * t) / ((1 - t * t) * (1 - t * t));
};
return contour_recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint);
}
// [a, oo) => [0, 1]
//
// integral_(a)^(oo) f(x) dx = integral_(0)^(oo) f(a + t^2) 2 t dt
// = integral_(0)^(1) f(a + g(s)^2) 2 g(s) g'(s) ds
// g(s) = s / (1 - s)
// g'(s) = 1 / (1 - s)^2
else if (intervalEnd > double.MaxValue)
{
Func u = (s) =>
{
return 2 * s * f(intervalBegin + (s / (1 - s)) * (s / (1 - s))) / ((1 - s) * (1 - s) * (1 - s));
};
return contour_recursive_adaptive_integrate(u, 0, 1, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint);
}
// (-oo, b] => [-1, 0]
//
// integral_(-oo)^(b) f(x) dx = -integral_(-oo)^(0) f(b - t^2) 2 t dt
// = -integral_(-1)^(0) f(b - g(s)^2) 2 g(s) g'(s) ds
// g(s) = s / (1 + s)
// g'(s) = 1 / (1 + s)^2
else if (intervalBegin < double.MinValue)
{
Func u = (s) =>
{
return -2 * s * f(intervalEnd - s / (1 + s) * (s / (1 + s))) / ((1 + s) * (1 + s) * (1 + s));
};
return contour_recursive_adaptive_integrate(u, -1, 0, maximumDepth, targetRelativeError, 0, out error, out L1Norm, gaussKronrodPoint);
}
// [a, b] => [-1, 1]
//
// integral_(a)^(b) f(x) dx = integral_(-1)^(1) f(g(t)) g'(t) dt
// g(t) = (b - a) * t * (3 - t^2) / 4 + (b + a) / 2
// g'(t) = 3 / 4 * (b - a) * (1 - t^2)
else
{
Func u = (t) =>
{
return f((intervalEnd - intervalBegin) / 4 * t * (3 - t * t) + (intervalEnd + intervalBegin) / 2) * 3 * (intervalEnd - intervalBegin) / 4 * (1 - t * t);
};
return contour_recursive_adaptive_integrate(u, -1, 1, maximumDepth, targetRelativeError, 0d, out error, out L1Norm, gaussKronrodPoint);
}
}
private static double integrate_non_adaptive_m1_1(Func f, out double error, out double pL1, GaussPointPair gaussKronrodPoint)
{
int gauss_start = 2;
int kronrod_start = 1;
int gauss_order = (gaussKronrodPoint.Order - 1) / 2;
double kronrod_result = 0d;
double gauss_result = 0d;
double fp, fm;
var KAbscissa = gaussKronrodPoint.Abscissas;
var KWeights = gaussKronrodPoint.Weights;
var GWeights = gaussKronrodPoint.SecondWeights;
if ((gauss_order & 1) == 1)
{
fp = f(0);
kronrod_result = fp * KWeights[0];
gauss_result += fp * GWeights[0];
}
else
{
fp = f(0);
kronrod_result = fp * KWeights[0];
gauss_start = 1;
kronrod_start = 2;
}
double L1 = Math.Abs(kronrod_result);
for (int i = gauss_start; i < KAbscissa.Length; i += 2)
{
fp = f(KAbscissa[i]);
fm = f(-KAbscissa[i]);
kronrod_result += (fp + fm) * KWeights[i];
L1 += (Math.Abs(fp) + Math.Abs(fm)) * KWeights[i];
gauss_result += (fp + fm) * GWeights[i / 2];
}
for (int i = kronrod_start; i < KAbscissa.Length; i += 2)
{
fp = f(KAbscissa[i]);
fm = f(-KAbscissa[i]);
kronrod_result += (fp + fm) * KWeights[i];
L1 += (Math.Abs(fp) + Math.Abs(fm)) * KWeights[i];
}
pL1 = L1;
error = Math.Max(Math.Abs(kronrod_result - gauss_result), Math.Abs(kronrod_result * Precision.MachineEpsilon * 2d));
return kronrod_result;
}
private static Complex contour_integrate_non_adaptive_m1_1(Func f, out double error, out double pL1, GaussPointPair gaussKronrodPoint)
{
int gauss_start = 2;
int kronrod_start = 1;
int gauss_order = (gaussKronrodPoint.Order - 1) / 2;
Complex kronrod_result = new Complex();
Complex gauss_result = new Complex();
Complex fp, fm;
var KAbscissa = gaussKronrodPoint.Abscissas;
var KWeights = gaussKronrodPoint.Weights;
var GWeights = gaussKronrodPoint.SecondWeights;
if (gauss_order.IsOdd())
{
fp = f(0);
kronrod_result = fp * KWeights[0];
gauss_result += fp * GWeights[0];
}
else
{
fp = f(0);
kronrod_result = fp * KWeights[0];
gauss_start = 1;
kronrod_start = 2;
}
double L1 = Complex.Abs(kronrod_result);
for (int i = gauss_start; i < KAbscissa.Length; i += 2)
{
fp = f(KAbscissa[i]);
fm = f(-KAbscissa[i]);
kronrod_result += (fp + fm) * KWeights[i];
L1 += (Complex.Abs(fp) + Complex.Abs(fm)) * KWeights[i];
gauss_result += (fp + fm) * GWeights[i / 2];
}
for (int i = kronrod_start; i < KAbscissa.Length; i += 2)
{
fp = f(KAbscissa[i]);
fm = f(-KAbscissa[i]);
kronrod_result += (fp + fm) * KWeights[i];
L1 += (Complex.Abs(fp) + Complex.Abs(fm)) * KWeights[i];
}
pL1 = L1;
error = Math.Max(Complex.Abs(kronrod_result - gauss_result), Complex.Abs(kronrod_result * Precision.MachineEpsilon * 2d));
return kronrod_result;
}
private static double recursive_adaptive_integrate(Func f, double a, double b, int max_levels, double rel_tol, double abs_tol, out double error, out double L1, GaussPointPair gaussKronrodPoint)
{
double error_local;
double mean = (b + a) / 2;
double scale = (b - a) / 2;
var r1 = integrate_non_adaptive_m1_1((x) => f(scale * x + mean), out error_local, out L1, gaussKronrodPoint);
var estimate = scale * r1;
var tmp = estimate * rel_tol;
var abs_tol1 = Math.Abs(tmp);
if (abs_tol == 0)
{
abs_tol = abs_tol1;
}
if (max_levels > 0 && (abs_tol1 < error_local) && (abs_tol < error_local))
{
double mid = (a + b) / 2d;
double L1_local;
estimate = recursive_adaptive_integrate(f, a, mid, max_levels - 1, rel_tol, abs_tol / 2, out error, out L1, gaussKronrodPoint);
estimate += recursive_adaptive_integrate(f, mid, b, max_levels - 1, rel_tol, abs_tol / 2, out error_local, out L1_local, gaussKronrodPoint);
error += error_local;
L1 += L1_local;
return estimate;
}
L1 *= scale;
error = error_local;
return estimate;
}
private static Complex contour_recursive_adaptive_integrate(Func f, double a, double b, int max_levels, double rel_tol, double abs_tol, out double error, out double L1, GaussPointPair gaussKronrodPoint)
{
double error_local;
double mean = (b + a) / 2;
double scale = (b - a) / 2;
var r1 = contour_integrate_non_adaptive_m1_1((x) => f(scale * x + mean), out error_local, out L1, gaussKronrodPoint);
var estimate = scale * r1;
var tmp = estimate * rel_tol;
var abs_tol1 = Complex.Abs(tmp);
if (abs_tol == 0)
{
abs_tol = abs_tol1;
}
if (max_levels > 0 && (abs_tol1 < error_local) && (abs_tol < error_local))
{
double mid = (a + b) / 2d;
double L1_local;
estimate = contour_recursive_adaptive_integrate(f, a, mid, max_levels - 1, rel_tol, abs_tol / 2, out error, out L1, gaussKronrodPoint);
estimate += contour_recursive_adaptive_integrate(f, mid, b, max_levels - 1, rel_tol, abs_tol / 2, out error_local, out L1_local, gaussKronrodPoint);
error += error_local;
L1 += L1_local;
return estimate;
}
L1 *= scale;
error = error_local;
return estimate;
}
}
}