//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra.Storage;
using IStation.Numerics.Threading;
namespace IStation.Numerics.LinearAlgebra.Complex
{
using Complex = System.Numerics.Complex;
///
/// Complex version of the class.
///
[Serializable]
public abstract class Vector : Vector
{
///
/// Initializes a new instance of the Vector class.
///
protected Vector(VectorStorage storage)
: base(storage)
{
}
///
/// Set all values whose absolute value is smaller than the threshold to zero.
///
public override void CoerceZero(double threshold)
{
MapInplace(x => x.Magnitude < threshold ? Complex.Zero : x, Zeros.AllowSkip);
}
///
/// Conjugates vector and save result to
///
/// Target vector
protected override void DoConjugate(Vector result)
{
Map(Complex.Conjugate, result, Zeros.AllowSkip);
}
///
/// Negates vector and saves result to
///
/// Target vector
protected override void DoNegate(Vector result)
{
Map(Complex.Negate, result, Zeros.AllowSkip);
}
///
/// Adds a scalar to each element of the vector and stores the result in the result vector.
///
///
/// The scalar to add.
///
///
/// The vector to store the result of the addition.
///
protected override void DoAdd(Complex scalar, Vector result)
{
Map(x => x + scalar, result, Zeros.Include);
}
///
/// Adds another vector to this vector and stores the result into the result vector.
///
///
/// The vector to add to this one.
///
///
/// The vector to store the result of the addition.
///
protected override void DoAdd(Vector other, Vector result)
{
Map2(Complex.Add, other, result, Zeros.AllowSkip);
}
///
/// Subtracts a scalar from each element of the vector and stores the result in the result vector.
///
///
/// The scalar to subtract.
///
///
/// The vector to store the result of the subtraction.
///
protected override void DoSubtract(Complex scalar, Vector result)
{
Map(x => x - scalar, result, Zeros.Include);
}
///
/// Subtracts another vector to this vector and stores the result into the result vector.
///
///
/// The vector to subtract from this one.
///
///
/// The vector to store the result of the subtraction.
///
protected override void DoSubtract(Vector other, Vector result)
{
Map2(Complex.Subtract, other, result, Zeros.AllowSkip);
}
///
/// Multiplies a scalar to each element of the vector and stores the result in the result vector.
///
///
/// The scalar to multiply.
///
///
/// The vector to store the result of the multiplication.
///
protected override void DoMultiply(Complex scalar, Vector result)
{
Map(x => x*scalar, result, Zeros.AllowSkip);
}
///
/// Divides each element of the vector by a scalar and stores the result in the result vector.
///
///
/// The scalar to divide with.
///
///
/// The vector to store the result of the division.
///
protected override void DoDivide(Complex divisor, Vector result)
{
Map(x => x/divisor, result, divisor.IsZero() ? Zeros.Include : Zeros.AllowSkip);
}
///
/// Divides a scalar by each element of the vector and stores the result in the result vector.
///
/// The scalar to divide.
/// The vector to store the result of the division.
protected override void DoDivideByThis(Complex dividend, Vector result)
{
Map(x => dividend/x, result, Zeros.Include);
}
///
/// Pointwise multiplies this vector with another vector and stores the result into the result vector.
///
/// The vector to pointwise multiply with this one.
/// The vector to store the result of the pointwise multiplication.
protected override void DoPointwiseMultiply(Vector other, Vector result)
{
Map2(Complex.Multiply, other, result, Zeros.AllowSkip);
}
///
/// Pointwise divide this vector with another vector and stores the result into the result vector.
///
/// The vector to pointwise divide this one by.
/// The vector to store the result of the pointwise division.
protected override void DoPointwiseDivide(Vector divisor, Vector result)
{
Map2(Complex.Divide, divisor, result, Zeros.Include);
}
///
/// Pointwise raise this vector to an exponent and store the result into the result vector.
///
/// The exponent to raise this vector values to.
/// The vector to store the result of the pointwise power.
protected override void DoPointwisePower(Complex exponent, Vector result)
{
Map(x => x.Power(exponent), result, Zeros.Include);
}
///
/// Pointwise raise this vector to an exponent vector and store the result into the result vector.
///
/// The exponent vector to raise this vector values to.
/// The vector to store the result of the pointwise power.
protected override void DoPointwisePower(Vector exponent, Vector result)
{
Map2(Complex.Pow, exponent, result, Zeros.Include);
}
///
/// Pointwise canonical modulus, where the result has the sign of the divisor,
/// of this vector with another vector and stores the result into the result vector.
///
/// The pointwise denominator vector to use.
/// The result of the modulus.
protected sealed override void DoPointwiseModulus(Vector divisor, Vector result)
{
throw new NotSupportedException();
}
///
/// Pointwise remainder (% operator), where the result has the sign of the dividend,
/// of this vector with another vector and stores the result into the result vector.
///
/// The pointwise denominator vector to use.
/// The result of the modulus.
protected sealed override void DoPointwiseRemainder(Vector divisor, Vector result)
{
throw new NotSupportedException();
}
///
/// Pointwise applies the exponential function to each value and stores the result into the result vector.
///
/// The vector to store the result.
protected override void DoPointwiseExp(Vector result)
{
Map(Complex.Exp, result, Zeros.Include);
}
///
/// Pointwise applies the natural logarithm function to each value and stores the result into the result vector.
///
/// The vector to store the result.
protected override void DoPointwiseLog(Vector result)
{
Map(Complex.Log, result, Zeros.Include);
}
protected override void DoPointwiseAbs(Vector result)
{
Map(x => (Complex)Complex.Abs(x), result, Zeros.AllowSkip);
}
protected override void DoPointwiseAcos(Vector result)
{
Map(Complex.Acos, result, Zeros.Include);
}
protected override void DoPointwiseAsin(Vector result)
{
Map(Complex.Asin, result, Zeros.AllowSkip);
}
protected override void DoPointwiseAtan(Vector result)
{
Map(Complex.Atan, result, Zeros.AllowSkip);
}
protected override void DoPointwiseAtan2(Vector other, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseAtan2(Complex scalar, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseCeiling(Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseCos(Vector result)
{
Map(Complex.Cos, result, Zeros.Include);
}
protected override void DoPointwiseCosh(Vector result)
{
Map(Complex.Cosh, result, Zeros.Include);
}
protected override void DoPointwiseFloor(Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseLog10(Vector result)
{
Map(Complex.Log10, result, Zeros.Include);
}
protected override void DoPointwiseRound(Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseSign(Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseSin(Vector result)
{
Map(Complex.Sin, result, Zeros.AllowSkip);
}
protected override void DoPointwiseSinh(Vector result)
{
Map(Complex.Sinh, result, Zeros.AllowSkip);
}
protected override void DoPointwiseSqrt(Vector result)
{
Map(Complex.Sqrt, result, Zeros.AllowSkip);
}
protected override void DoPointwiseTan(Vector result)
{
Map(Complex.Tan, result, Zeros.AllowSkip);
}
protected override void DoPointwiseTanh(Vector result)
{
Map(Complex.Tanh, result, Zeros.AllowSkip);
}
///
/// Computes the dot product between this vector and another vector.
///
/// The other vector.
/// The sum of a[i]*b[i] for all i.
protected override Complex DoDotProduct(Vector other)
{
var dot = Complex.Zero;
for (var i = 0; i < Count; i++)
{
dot += At(i) * other.At(i);
}
return dot;
}
///
/// Computes the dot product between the conjugate of this vector and another vector.
///
/// The other vector.
/// The sum of conj(a[i])*b[i] for all i.
protected override Complex DoConjugateDotProduct(Vector other)
{
var dot = Complex.Zero;
for (var i = 0; i < Count; i++)
{
dot += At(i).Conjugate() * other.At(i);
}
return dot;
}
///
/// Computes the canonical modulus, where the result has the sign of the divisor,
/// for each element of the vector for the given divisor.
///
/// The scalar denominator to use.
/// A vector to store the results in.
protected sealed override void DoModulus(Complex divisor, Vector result)
{
throw new NotSupportedException();
}
///
/// Computes the canonical modulus, where the result has the sign of the divisor,
/// for the given dividend for each element of the vector.
///
/// The scalar numerator to use.
/// A vector to store the results in.
protected sealed override void DoModulusByThis(Complex dividend, Vector result)
{
throw new NotSupportedException();
}
///
/// Computes the canonical modulus, where the result has the sign of the divisor,
/// for each element of the vector for the given divisor.
///
/// The scalar denominator to use.
/// A vector to store the results in.
protected sealed override void DoRemainder(Complex divisor, Vector result)
{
throw new NotSupportedException();
}
///
/// Computes the canonical modulus, where the result has the sign of the divisor,
/// for the given dividend for each element of the vector.
///
/// The scalar numerator to use.
/// A vector to store the results in.
protected sealed override void DoRemainderByThis(Complex dividend, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseMinimum(Complex scalar, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseMaximum(Complex scalar, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseAbsoluteMinimum(Complex scalar, Vector result)
{
double absolute = scalar.Magnitude;
Map(x => Math.Min(absolute, x.Magnitude), result, Zeros.AllowSkip);
}
protected override void DoPointwiseAbsoluteMaximum(Complex scalar, Vector result)
{
double absolute = scalar.Magnitude;
Map(x => Math.Max(absolute, x.Magnitude), result, Zeros.Include);
}
protected override void DoPointwiseMinimum(Vector other, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseMaximum(Vector other, Vector result)
{
throw new NotSupportedException();
}
protected override void DoPointwiseAbsoluteMinimum(Vector other, Vector result)
{
Map2((x, y) => Math.Min(x.Magnitude, y.Magnitude), other, result, Zeros.AllowSkip);
}
protected override void DoPointwiseAbsoluteMaximum(Vector other, Vector result)
{
Map2((x, y) => Math.Max(x.Magnitude, y.Magnitude), other, result, Zeros.AllowSkip);
}
///
/// Returns the value of the absolute minimum element.
///
/// The value of the absolute minimum element.
public sealed override Complex AbsoluteMinimum()
{
return At(AbsoluteMinimumIndex()).Magnitude;
}
///
/// Returns the index of the absolute minimum element.
///
/// The index of absolute minimum element.
public override int AbsoluteMinimumIndex()
{
var index = 0;
var min = At(index).Magnitude;
for (var i = 1; i < Count; i++)
{
var test = At(i).Magnitude;
if (test < min)
{
index = i;
min = test;
}
}
return index;
}
///
/// Returns the value of the absolute maximum element.
///
/// The value of the absolute maximum element.
public override Complex AbsoluteMaximum()
{
return At(AbsoluteMaximumIndex()).Magnitude;
}
///
/// Returns the index of the absolute maximum element.
///
/// The index of absolute maximum element.
public override int AbsoluteMaximumIndex()
{
var index = 0;
var max = At(index).Magnitude;
for (var i = 1; i < Count; i++)
{
var test = At(i).Magnitude;
if (test > max)
{
index = i;
max = test;
}
}
return index;
}
///
/// Computes the sum of the vector's elements.
///
/// The sum of the vector's elements.
public override Complex Sum()
{
var sum = Complex.Zero;
for (var i = 0; i < Count; i++)
{
sum += At(i);
}
return sum;
}
///
/// Calculates the L1 norm of the vector, also known as Manhattan norm.
///
/// The sum of the absolute values.
public override double L1Norm()
{
double sum = 0d;
for (var i = 0; i < Count; i++)
{
sum += At(i).Magnitude;
}
return sum;
}
///
/// Calculates the L2 norm of the vector, also known as Euclidean norm.
///
/// The square root of the sum of the squared values.
public override double L2Norm()
{
return DoConjugateDotProduct(this).SquareRoot().Real;
}
///
/// Calculates the infinity norm of the vector.
///
/// The maximum absolute value.
public override double InfinityNorm()
{
return CommonParallel.Aggregate(0, Count, i => At(i).Magnitude, Math.Max, 0d);
}
///
/// Computes the p-Norm.
///
///
/// The p value.
///
///
/// Scalar ret = ( ∑|At(i)|^p )^(1/p)
///
public override double Norm(double p)
{
if (p < 0d) throw new ArgumentOutOfRangeException(nameof(p));
if (p == 1d) return L1Norm();
if (p == 2d) return L2Norm();
if (double.IsPositiveInfinity(p)) return InfinityNorm();
double sum = 0d;
for (var index = 0; index < Count; index++)
{
sum += Math.Pow(At(index).Magnitude, p);
}
return Math.Pow(sum, 1.0/p);
}
///
/// Returns the index of the maximum element.
///
/// The index of maximum element.
public override int MaximumIndex()
{
throw new NotSupportedException();
}
///
/// Returns the index of the minimum element.
///
/// The index of minimum element.
public override int MinimumIndex()
{
throw new NotSupportedException();
}
///
/// Normalizes this vector to a unit vector with respect to the p-norm.
///
///
/// The p value.
///
///
/// This vector normalized to a unit vector with respect to the p-norm.
///
public override Vector Normalize(double p)
{
if (p < 0d)
{
throw new ArgumentOutOfRangeException(nameof(p));
}
double norm = Norm(p);
var clone = Clone();
if (norm == 0d)
{
return clone;
}
clone.Multiply(1d / norm, clone);
return clone;
}
}
}