//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Linq;
using IStation.Numerics.LinearAlgebra.Factorization;
using IStation.Numerics.Threading;
namespace IStation.Numerics.LinearAlgebra.Complex32.Factorization
{
using Numerics;
///
/// A class which encapsulates the functionality of the QR decomposition.
/// Any real square matrix A may be decomposed as A = QR where Q is an orthogonal matrix
/// (its columns are orthogonal unit vectors meaning QTQ = I) and R is an upper triangular matrix
/// (also called right triangular matrix).
///
///
/// The computation of the QR decomposition is done at construction time by Householder transformation.
///
internal sealed class UserQR : QR
{
///
/// Initializes a new instance of the class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
///
/// The matrix to factor.
/// The QR factorization method to use.
/// If is null.
public static UserQR Create(Matrix matrix, QRMethod method = QRMethod.Full)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch(matrix);
}
Matrix q;
Matrix r;
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
var u = new Complex32[minmn][];
if (method == QRMethod.Full)
{
r = matrix.Clone();
q = Matrix.Build.SameAs(matrix, matrix.RowCount, matrix.RowCount, fullyMutable: true);
for (var i = 0; i < matrix.RowCount; i++)
{
q.At(i, i, 1.0f);
}
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(r, i, i);
ComputeQR(u[i], r, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.RowCount, Control.MaxDegreeOfParallelism);
}
}
else
{
q = matrix.Clone();
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(q, i, i);
ComputeQR(u[i], q, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
}
r = q.SubMatrix(0, matrix.ColumnCount, 0, matrix.ColumnCount);
q.Clear();
for (var i = 0; i < matrix.ColumnCount; i++)
{
q.At(i, i, 1.0f);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
}
}
return new UserQR(q, r, method);
}
UserQR(Matrix q, Matrix rFull, QRMethod method)
: base(q, rFull, method)
{
}
///
/// Generate column from initial matrix to work array
///
/// Initial matrix
/// The first row
/// Column index
/// Generated vector
static Complex32[] GenerateColumn(Matrix a, int row, int column)
{
var ru = a.RowCount - row;
var u = new Complex32[ru];
for (var i = row; i < a.RowCount; i++)
{
u[i - row] = a.At(i, column);
a.At(i, column, 0.0f);
}
var norm = u.Aggregate(Complex32.Zero, (current, t) => current + (t.Magnitude*t.Magnitude));
norm = norm.SquareRoot();
if (row == a.RowCount - 1 || norm.Magnitude == 0)
{
a.At(row, column, -u[0]);
u[0] = (float) Constants.Sqrt2;
return u;
}
if (u[0].Magnitude != 0.0f)
{
norm = norm.Magnitude*(u[0]/u[0].Magnitude);
}
a.At(row, column, -norm);
for (var i = 0; i < ru; i++)
{
u[i] /= norm;
}
u[0] += 1.0f;
var s = (1.0f/u[0]).SquareRoot();
for (var i = 0; i < ru; i++)
{
u[i] = u[i].Conjugate()*s;
}
return u;
}
///
/// Perform calculation of Q or R
///
/// Work array
/// Q or R matrices
/// The first row
/// The last row
/// The first column
/// The last column
/// Number of available CPUs
static void ComputeQR(Complex32[] u, Matrix a, int rowStart, int rowDim, int columnStart, int columnDim, int availableCores)
{
if (rowDim < rowStart || columnDim < columnStart)
{
return;
}
var tmpColCount = columnDim - columnStart;
if ((availableCores > 1) && (tmpColCount > 200))
{
var tmpSplit = columnStart + (tmpColCount/2);
var tmpCores = availableCores/2;
CommonParallel.Invoke(
() => ComputeQR(u, a, rowStart, rowDim, columnStart, tmpSplit, tmpCores),
() => ComputeQR(u, a, rowStart, rowDim, tmpSplit, columnDim, tmpCores));
}
else
{
for (var j = columnStart; j < columnDim; j++)
{
var scale = Complex32.Zero;
for (var i = rowStart; i < rowDim; i++)
{
scale += u[i - rowStart]*a.At(i, j);
}
for (var i = rowStart; i < rowDim; i++)
{
a.At(i, j, a.At(i, j) - (u[i - rowStart].Conjugate()*scale));
}
}
}
}
///
/// Solves a system of linear equations, AX = B, with A QR factorized.
///
/// The right hand side , B.
/// The left hand side , X.
public override void Solve(Matrix input, Matrix result)
{
// The solution X should have the same number of columns as B
if (input.ColumnCount != result.ColumnCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
if (FullR.RowCount != input.RowCount)
{
throw new ArgumentException("Matrix row dimensions must agree.");
}
// The solution X row dimension is equal to the column dimension of A
if (FullR.ColumnCount != result.RowCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
var inputCopy = input.Clone();
// Compute Y = transpose(Q)*B
var column = new Complex32[FullR.RowCount];
for (var j = 0; j < input.ColumnCount; j++)
{
for (var k = 0; k < FullR.RowCount; k++)
{
column[k] = inputCopy.At(k, j);
}
for (var i = 0; i < FullR.RowCount; i++)
{
var s = Complex32.Zero;
for (var k = 0; k < FullR.RowCount; k++)
{
s += Q.At(k, i).Conjugate()*column[k];
}
inputCopy.At(i, j, s);
}
}
// Solve R*X = Y;
for (var k = FullR.ColumnCount - 1; k >= 0; k--)
{
for (var j = 0; j < input.ColumnCount; j++)
{
inputCopy.At(k, j, inputCopy.At(k, j)/FullR.At(k, k));
}
for (var i = 0; i < k; i++)
{
for (var j = 0; j < input.ColumnCount; j++)
{
inputCopy.At(i, j, inputCopy.At(i, j) - (inputCopy.At(k, j)*FullR.At(i, k)));
}
}
}
for (var i = 0; i < FullR.ColumnCount; i++)
{
for (var j = 0; j < inputCopy.ColumnCount; j++)
{
result.At(i, j, inputCopy.At(i, j));
}
}
}
///
/// Solves a system of linear equations, Ax = b, with A QR factorized.
///
/// The right hand side vector, b.
/// The left hand side , x.
public override void Solve(Vector input, Vector result)
{
// Ax=b where A is an m x n matrix
// Check that b is a column vector with m entries
if (FullR.RowCount != input.Count)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
// Check that x is a column vector with n entries
if (FullR.ColumnCount != result.Count)
{
throw Matrix.DimensionsDontMatch(FullR, result);
}
var inputCopy = input.Clone();
// Compute Y = transpose(Q)*B
var column = new Complex32[FullR.RowCount];
for (var k = 0; k < FullR.RowCount; k++)
{
column[k] = inputCopy[k];
}
for (var i = 0; i < FullR.RowCount; i++)
{
var s = Complex32.Zero;
for (var k = 0; k < FullR.RowCount; k++)
{
s += Q.At(k, i).Conjugate()*column[k];
}
inputCopy[i] = s;
}
// Solve R*X = Y;
for (var k = FullR.ColumnCount - 1; k >= 0; k--)
{
inputCopy[k] /= FullR.At(k, k);
for (var i = 0; i < k; i++)
{
inputCopy[i] -= inputCopy[k]*FullR.At(i, k);
}
}
for (var i = 0; i < FullR.ColumnCount; i++)
{
result[i] = inputCopy[i];
}
}
}
}