//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using System.Diagnostics;
using IStation.Numerics.LinearAlgebra.Storage;
using IStation.Numerics.Providers.LinearAlgebra;
using IStation.Numerics.Threading;
namespace IStation.Numerics.LinearAlgebra.Complex32
{
using Numerics;
///
/// A vector with sparse storage, intended for very large vectors where most of the cells are zero.
///
/// The sparse vector is not thread safe.
[Serializable]
[DebuggerDisplay("SparseVector {Count}-Complex32 {NonZerosCount}-NonZero")]
public class SparseVector : Vector
{
readonly SparseVectorStorage _storage;
///
/// Gets the number of non zero elements in the vector.
///
/// The number of non zero elements.
public int NonZerosCount => _storage.ValueCount;
///
/// Create a new sparse vector straight from an initialized vector storage instance.
/// The storage is used directly without copying.
/// Intended for advanced scenarios where you're working directly with
/// storage for performance or interop reasons.
///
public SparseVector(SparseVectorStorage storage)
: base(storage)
{
_storage = storage;
}
///
/// Create a new sparse vector with the given length.
/// All cells of the vector will be initialized to zero.
///
/// If length is less than one.
public SparseVector(int length)
: this(new SparseVectorStorage(length))
{
}
///
/// Create a new sparse vector as a copy of the given other vector.
/// This new vector will be independent from the other vector.
/// A new memory block will be allocated for storing the vector.
///
public static SparseVector OfVector(Vector vector)
{
return new SparseVector(SparseVectorStorage.OfVector(vector.Storage));
}
///
/// Create a new sparse vector as a copy of the given enumerable.
/// This new vector will be independent from the enumerable.
/// A new memory block will be allocated for storing the vector.
///
public static SparseVector OfEnumerable(IEnumerable enumerable)
{
return new SparseVector(SparseVectorStorage.OfEnumerable(enumerable));
}
///
/// Create a new sparse vector as a copy of the given indexed enumerable.
/// Keys must be provided at most once, zero is assumed if a key is omitted.
/// This new vector will be independent from the enumerable.
/// A new memory block will be allocated for storing the vector.
///
public static SparseVector OfIndexedEnumerable(int length, IEnumerable> enumerable)
{
return new SparseVector(SparseVectorStorage.OfIndexedEnumerable(length, enumerable));
}
///
/// Create a new sparse vector and initialize each value using the provided value.
///
public static SparseVector Create(int length, Complex32 value)
{
return new SparseVector(SparseVectorStorage.OfValue(length, value));
}
///
/// Create a new sparse vector and initialize each value using the provided init function.
///
public static SparseVector Create(int length, Func init)
{
return new SparseVector(SparseVectorStorage.OfInit(length, init));
}
///
/// Adds a scalar to each element of the vector and stores the result in the result vector.
/// Warning, the new 'sparse vector' with a non-zero scalar added to it will be a 100% filled
/// sparse vector and very inefficient. Would be better to work with a dense vector instead.
///
///
/// The scalar to add.
///
///
/// The vector to store the result of the addition.
///
protected override void DoAdd(Complex32 scalar, Vector result)
{
if (scalar == Complex32.Zero)
{
if (!ReferenceEquals(this, result))
{
CopyTo(result);
}
return;
}
if (ReferenceEquals(this, result))
{
//populate a new vector with the scalar
var vnonZeroValues = new Complex32[Count];
var vnonZeroIndices = new int[Count];
for (int index = 0; index < Count; index++)
{
vnonZeroIndices[index] = index;
vnonZeroValues[index] = scalar;
}
//populate the non zero values from this
var indices = _storage.Indices;
var values = _storage.Values;
for (int j = 0; j < _storage.ValueCount; j++)
{
vnonZeroValues[indices[j]] = values[j] + scalar;
}
//assign this vectors array to the new arrays.
_storage.Values = vnonZeroValues;
_storage.Indices = vnonZeroIndices;
_storage.ValueCount = Count;
}
else
{
for (var index = 0; index < Count; index++)
{
result.At(index, At(index) + scalar);
}
}
}
///
/// Adds another vector to this vector and stores the result into the result vector.
///
///
/// The vector to add to this one.
///
///
/// The vector to store the result of the addition.
///
protected override void DoAdd(Vector other, Vector result)
{
if (other is SparseVector otherSparse && result is SparseVector resultSparse)
{
// TODO (ruegg, 2011-10-11): Options to optimize?
var otherStorage = otherSparse._storage;
if (ReferenceEquals(this, resultSparse))
{
int i = 0, j = 0;
while (j < otherStorage.ValueCount)
{
if (i >= _storage.ValueCount || _storage.Indices[i] > otherStorage.Indices[j])
{
var otherValue = otherStorage.Values[j];
if (!Complex32.Zero.Equals(otherValue))
{
_storage.InsertAtIndexUnchecked(i++, otherStorage.Indices[j], otherValue);
}
j++;
}
else if (_storage.Indices[i] == otherStorage.Indices[j])
{
// TODO: result can be zero, remove?
_storage.Values[i++] += otherStorage.Values[j++];
}
else
{
i++;
}
}
}
else
{
result.Clear();
int i = 0, j = 0, last = -1;
while (i < _storage.ValueCount || j < otherStorage.ValueCount)
{
if (j >= otherStorage.ValueCount || i < _storage.ValueCount && _storage.Indices[i] <= otherStorage.Indices[j])
{
var next = _storage.Indices[i];
if (next != last)
{
last = next;
result.At(next, _storage.Values[i] + otherSparse.At(next));
}
i++;
}
else
{
var next = otherStorage.Indices[j];
if (next != last)
{
last = next;
result.At(next, At(next) + otherStorage.Values[j]);
}
j++;
}
}
}
}
else
{
base.DoAdd(other, result);
}
}
///
/// Subtracts a scalar from each element of the vector and stores the result in the result vector.
///
///
/// The scalar to subtract.
///
///
/// The vector to store the result of the subtraction.
///
protected override void DoSubtract(Complex32 scalar, Vector result)
{
DoAdd(-scalar, result);
}
///
/// Subtracts another vector to this vector and stores the result into the result vector.
///
///
/// The vector to subtract from this one.
///
///
/// The vector to store the result of the subtraction.
///
protected override void DoSubtract(Vector other, Vector result)
{
if (ReferenceEquals(this, other))
{
result.Clear();
return;
}
if (other is SparseVector otherSparse && result is SparseVector resultSparse)
{
// TODO (ruegg, 2011-10-11): Options to optimize?
var otherStorage = otherSparse._storage;
if (ReferenceEquals(this, resultSparse))
{
int i = 0, j = 0;
while (j < otherStorage.ValueCount)
{
if (i >= _storage.ValueCount || _storage.Indices[i] > otherStorage.Indices[j])
{
var otherValue = otherStorage.Values[j];
if (!Complex32.Zero.Equals(otherValue))
{
_storage.InsertAtIndexUnchecked(i++, otherStorage.Indices[j], -otherValue);
}
j++;
}
else if (_storage.Indices[i] == otherStorage.Indices[j])
{
// TODO: result can be zero, remove?
_storage.Values[i++] -= otherStorage.Values[j++];
}
else
{
i++;
}
}
}
else
{
result.Clear();
int i = 0, j = 0, last = -1;
while (i < _storage.ValueCount || j < otherStorage.ValueCount)
{
if (j >= otherStorage.ValueCount || i < _storage.ValueCount && _storage.Indices[i] <= otherStorage.Indices[j])
{
var next = _storage.Indices[i];
if (next != last)
{
last = next;
result.At(next, _storage.Values[i] - otherSparse.At(next));
}
i++;
}
else
{
var next = otherStorage.Indices[j];
if (next != last)
{
last = next;
result.At(next, At(next) - otherStorage.Values[j]);
}
j++;
}
}
}
}
else
{
base.DoSubtract(other, result);
}
}
///
/// Negates vector and saves result to
///
/// Target vector
protected override void DoNegate(Vector result)
{
if (result is SparseVector sparseResult)
{
if (!ReferenceEquals(this, result))
{
sparseResult._storage.ValueCount = _storage.ValueCount;
sparseResult._storage.Indices = new int[_storage.ValueCount];
Buffer.BlockCopy(_storage.Indices, 0, sparseResult._storage.Indices, 0, _storage.ValueCount * Constants.SizeOfInt);
sparseResult._storage.Values = new Complex32[_storage.ValueCount];
Array.Copy(_storage.Values, 0, sparseResult._storage.Values, 0, _storage.ValueCount);
}
LinearAlgebraControl.Provider.ScaleArray(-Complex32.One, sparseResult._storage.Values, sparseResult._storage.Values);
}
else
{
result.Clear();
for (var index = 0; index < _storage.ValueCount; index++)
{
result.At(_storage.Indices[index], -_storage.Values[index]);
}
}
}
///
/// Conjugates vector and save result to
///
/// Target vector
protected override void DoConjugate(Vector result)
{
if (result is SparseVector sparseResult)
{
if (!ReferenceEquals(this, result))
{
sparseResult._storage.ValueCount = _storage.ValueCount;
sparseResult._storage.Indices = new int[_storage.ValueCount];
Buffer.BlockCopy(_storage.Indices, 0, sparseResult._storage.Indices, 0, _storage.ValueCount*Constants.SizeOfInt);
sparseResult._storage.Values = new Complex32[_storage.ValueCount];
Array.Copy(_storage.Values, 0, sparseResult._storage.Values, 0, _storage.ValueCount);
}
LinearAlgebraControl.Provider.ConjugateArray(sparseResult._storage.Values, sparseResult._storage.Values);
return;
}
result.Clear();
for (var index = 0; index < _storage.ValueCount; index++)
{
result.At(_storage.Indices[index], _storage.Values[index].Conjugate());
}
}
///
/// Multiplies a scalar to each element of the vector and stores the result in the result vector.
///
///
/// The scalar to multiply.
///
///
/// The vector to store the result of the multiplication.
///
protected override void DoMultiply(Complex32 scalar, Vector result)
{
if (result is SparseVector sparseResult)
{
if (!ReferenceEquals(this, result))
{
sparseResult._storage.ValueCount = _storage.ValueCount;
sparseResult._storage.Indices = new int[_storage.ValueCount];
Buffer.BlockCopy(_storage.Indices, 0, sparseResult._storage.Indices, 0, _storage.ValueCount * Constants.SizeOfInt);
sparseResult._storage.Values = new Complex32[_storage.ValueCount];
Array.Copy(_storage.Values, 0, sparseResult._storage.Values, 0, _storage.ValueCount);
}
LinearAlgebraControl.Provider.ScaleArray(scalar, sparseResult._storage.Values, sparseResult._storage.Values);
}
else
{
result.Clear();
for (var index = 0; index < _storage.ValueCount; index++)
{
result.At(_storage.Indices[index], scalar * _storage.Values[index]);
}
}
}
///
/// Computes the dot product between this vector and another vector.
///
/// The other vector.
/// The sum of a[i]*b[i] for all i.
protected override Complex32 DoDotProduct(Vector other)
{
var result = Complex32.Zero;
if (ReferenceEquals(this, other))
{
for (var i = 0; i < _storage.ValueCount; i++)
{
result += _storage.Values[i] * _storage.Values[i];
}
}
else
{
for (var i = 0; i < _storage.ValueCount; i++)
{
result += _storage.Values[i] * other.At(_storage.Indices[i]);
}
}
return result;
}
///
/// Computes the dot product between the conjugate of this vector and another vector.
///
/// The other vector.
/// The sum of conj(a[i])*b[i] for all i.
protected override Complex32 DoConjugateDotProduct(Vector other)
{
var result = Complex32.Zero;
if (ReferenceEquals(this, other))
{
for (var i = 0; i < _storage.ValueCount; i++)
{
result += _storage.Values[i].Conjugate() * _storage.Values[i];
}
}
else
{
for (var i = 0; i < _storage.ValueCount; i++)
{
result += _storage.Values[i].Conjugate() * other.At(_storage.Indices[i]);
}
}
return result;
}
///
/// Adds two Vectors together and returns the results.
///
/// One of the vectors to add.
/// The other vector to add.
/// The result of the addition.
/// If and are not the same size.
/// If or is .
public static SparseVector operator +(SparseVector leftSide, SparseVector rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (SparseVector)leftSide.Add(rightSide);
}
///
/// Returns a Vector containing the negated values of .
///
/// The vector to get the values from.
/// A vector containing the negated values as .
/// If is .
public static SparseVector operator -(SparseVector rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
return (SparseVector)rightSide.Negate();
}
///
/// Subtracts two Vectors and returns the results.
///
/// The vector to subtract from.
/// The vector to subtract.
/// The result of the subtraction.
/// If and are not the same size.
/// If or is .
public static SparseVector operator -(SparseVector leftSide, SparseVector rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (SparseVector)leftSide.Subtract(rightSide);
}
///
/// Multiplies a vector with a complex.
///
/// The vector to scale.
/// The complex value.
/// The result of the multiplication.
/// If is .
public static SparseVector operator *(SparseVector leftSide, Complex32 rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (SparseVector)leftSide.Multiply(rightSide);
}
///
/// Multiplies a vector with a complex.
///
/// The complex value.
/// The vector to scale.
/// The result of the multiplication.
/// If is .
public static SparseVector operator *(Complex32 leftSide, SparseVector rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
return (SparseVector)rightSide.Multiply(leftSide);
}
///
/// Computes the dot product between two Vectors.
///
/// The left row vector.
/// The right column vector.
/// The dot product between the two vectors.
/// If and are not the same size.
/// If or is .
public static Complex32 operator *(SparseVector leftSide, SparseVector rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return leftSide.DotProduct(rightSide);
}
///
/// Divides a vector with a complex.
///
/// The vector to divide.
/// The complex value.
/// The result of the division.
/// If is .
public static SparseVector operator /(SparseVector leftSide, Complex32 rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (SparseVector)leftSide.Divide(rightSide);
}
///
/// Computes the modulus of each element of the vector of the given divisor.
///
/// The vector whose elements we want to compute the modulus of.
/// The divisor to use,
/// The result of the calculation
/// If is .
public static SparseVector operator %(SparseVector leftSide, Complex32 rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (SparseVector)leftSide.Modulus(rightSide);
}
///
/// Returns the index of the absolute minimum element.
///
/// The index of absolute minimum element.
public override int AbsoluteMinimumIndex()
{
if (_storage.ValueCount == 0)
{
// No non-zero elements. Return 0
return 0;
}
var index = 0;
var min = _storage.Values[index].Magnitude;
for (var i = 1; i < _storage.ValueCount; i++)
{
var test = _storage.Values[i].Magnitude;
if (test < min)
{
index = i;
min = test;
}
}
return _storage.Indices[index];
}
///
/// Returns the index of the absolute maximum element.
///
/// The index of absolute maximum element.
public override int AbsoluteMaximumIndex()
{
if (_storage.ValueCount == 0)
{
// No non-zero elements. Return 0
return 0;
}
var index = 0;
var max = _storage.Values[index].Magnitude;
for (var i = 1; i < _storage.ValueCount; i++)
{
var test = _storage.Values[i].Magnitude;
if (test > max)
{
index = i;
max = test;
}
}
return _storage.Indices[index];
}
///
/// Computes the sum of the vector's elements.
///
/// The sum of the vector's elements.
public override Complex32 Sum()
{
var result = Complex32.Zero;
for (var i = 0; i < _storage.ValueCount; i++)
{
result += _storage.Values[i];
}
return result;
}
///
/// Calculates the L1 norm of the vector, also known as Manhattan norm.
///
/// The sum of the absolute values.
public override double L1Norm()
{
double result = 0d;
for (var i = 0; i < _storage.ValueCount; i++)
{
result += _storage.Values[i].Magnitude;
}
return result;
}
///
/// Calculates the infinity norm of the vector.
///
/// The maximum absolute value.
public override double InfinityNorm()
{
return CommonParallel.Aggregate(0, _storage.ValueCount, i => _storage.Values[i].Magnitude, Math.Max, 0f);
}
///
/// Computes the p-Norm.
///
/// The p value.
/// Scalar ret = ( ∑|this[i]|^p )^(1/p)
public override double Norm(double p)
{
if (p < 0d) throw new ArgumentOutOfRangeException(nameof(p));
if (_storage.ValueCount == 0)
{
return 0d;
}
if (p == 1d) return L1Norm();
if (p == 2d) return L2Norm();
if (double.IsPositiveInfinity(p)) return InfinityNorm();
double sum = 0d;
for (var index = 0; index < _storage.ValueCount; index++)
{
sum += Math.Pow(_storage.Values[index].Magnitude, p);
}
return Math.Pow(sum, 1.0 / p);
}
///
/// Pointwise multiplies this vector with another vector and stores the result into the result vector.
///
/// The vector to pointwise multiply with this one.
/// The vector to store the result of the pointwise multiplication.
protected override void DoPointwiseMultiply(Vector other, Vector result)
{
if (ReferenceEquals(this, other) && ReferenceEquals(this, result))
{
for (var i = 0; i < _storage.ValueCount; i++)
{
_storage.Values[i] *= _storage.Values[i];
}
}
else
{
base.DoPointwiseMultiply(other, result);
}
}
#region Parse Functions
///
/// Creates a double sparse vector based on a string. The string can be in the following formats (without the
/// quotes): 'n', 'n;n;..', '(n;n;..)', '[n;n;...]', where n is a Complex32.
///
///
/// A double sparse vector containing the values specified by the given string.
///
///
/// the string to parse.
///
///
/// An that supplies culture-specific formatting information.
///
public static SparseVector Parse(string value, IFormatProvider formatProvider = null)
{
if (value == null)
{
throw new ArgumentNullException(nameof(value));
}
value = value.Trim();
if (value.Length == 0)
{
throw new FormatException();
}
// strip out parens
if (value.StartsWith("(", StringComparison.Ordinal))
{
if (!value.EndsWith(")", StringComparison.Ordinal))
{
throw new FormatException();
}
value = value.Substring(1, value.Length - 2).Trim();
}
if (value.StartsWith("[", StringComparison.Ordinal))
{
if (!value.EndsWith("]", StringComparison.Ordinal))
{
throw new FormatException();
}
value = value.Substring(1, value.Length - 2).Trim();
}
// parsing
var strongTokens = value.Split(new[] { formatProvider.GetTextInfo().ListSeparator }, StringSplitOptions.RemoveEmptyEntries);
var data = new List();
foreach (string strongToken in strongTokens)
{
var weakTokens = strongToken.Split(new[] { " ", "\t" }, StringSplitOptions.RemoveEmptyEntries);
string current = string.Empty;
for (int i = 0; i < weakTokens.Length; i++)
{
current += weakTokens[i];
if (current.EndsWith("+") || current.EndsWith("-") || current.StartsWith("(") && !current.EndsWith(")"))
{
continue;
}
var ahead = i < weakTokens.Length - 1 ? weakTokens[i + 1] : string.Empty;
if (ahead.StartsWith("+") || ahead.StartsWith("-"))
{
continue;
}
data.Add(current.ToComplex32(formatProvider));
current = string.Empty;
}
if (current != string.Empty)
{
throw new FormatException();
}
}
if (data.Count == 0)
{
throw new FormatException();
}
return OfEnumerable(data);
}
///
/// Converts the string representation of a complex sparse vector to double-precision sparse vector equivalent.
/// A return value indicates whether the conversion succeeded or failed.
///
///
/// A string containing a complex vector to convert.
///
///
/// The parsed value.
///
///
/// If the conversion succeeds, the result will contain a complex number equivalent to value.
/// Otherwise the result will be null.
///
public static bool TryParse(string value, out SparseVector result)
{
return TryParse(value, null, out result);
}
///
/// Converts the string representation of a complex sparse vector to double-precision sparse vector equivalent.
/// A return value indicates whether the conversion succeeded or failed.
///
///
/// A string containing a complex vector to convert.
///
///
/// An that supplies culture-specific formatting information about value.
///
///
/// The parsed value.
///
///
/// If the conversion succeeds, the result will contain a complex number equivalent to value.
/// Otherwise the result will be null.
///
public static bool TryParse(string value, IFormatProvider formatProvider, out SparseVector result)
{
bool ret;
try
{
result = Parse(value, formatProvider);
ret = true;
}
catch (ArgumentNullException)
{
result = null;
ret = false;
}
catch (FormatException)
{
result = null;
ret = false;
}
return ret;
}
#endregion
public override string ToTypeString()
{
return FormattableString.Invariant($"SparseVector {Count}-Complex32 {NonZerosCount / (double) Count:P2} Filled");
}
}
}