# xgboost修改版本 import os import pickle import pandas as pd import numpy as np from numpy.lib.stride_tricks import sliding_window_view import tkinter as tk import tkinter.font as tkfont from tkinter import ttk from datetime import timedelta from time import time import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from xgboost import XGBRegressor from lunardate import LunarDate from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.preprocessing import StandardScaler # 添加StandardScaler from sklearn.ensemble import RandomForestRegressor # 添加RandomForest作为备选模型 from xgboost import XGBRFRegressor # 添加XGBoost的随机森林变种 import matplotlib from scipy.signal import savgol_filter import matplotlib.dates as mdates # 配置 matplotlib 中文显示 matplotlib.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'SimSun', 'Arial Unicode MS'] matplotlib.rcParams['axes.unicode_minus'] = False matplotlib.rcParams['font.family'] = 'sans-serif' # 全局缓存变量及特征名称 cached_model = None last_training_time = None feature_columns = None current_view = {'xlim': None, 'ylim': None} # 用于存储当前图表视图 prediction_mode = "青龙港-陈行" # 默认预测模式 current_df = None # 当前使用的数据集 # 定义改进的盐度数据异常过滤方法 def filter_salinity_anomalies(df, threshold_ratio=0.5, window_size=5, max_days=1): # 复制数据,避免修改原始数据 filtered_df = df.copy() # 确保能访问到日期信息(由于日期已设置为索引) values = filtered_df['Value'].values dates = filtered_df.index.values # 从索引获取日期 # 1. 首先处理单个异常点 i = 1 while i < len(values): # 检查当前值是否小于前一个值的threshold_ratio if values[i] < values[i-1] * threshold_ratio: baseline = values[i-1] # 基准值为上一个正常的盐度值 anomaly_start = i j = i # 向后查找,直到找到一个不小于基准值threshold_ratio的点 # 或者直到时间区间超过max_days天 anomaly_start_date = dates[anomaly_start] max_date = anomaly_start_date + np.timedelta64(int(max_days*24), 'h') while j < len(values) and values[j] < baseline * threshold_ratio and dates[j] <= max_date: j += 1 anomaly_end = j - 1 # 异常区间的结束位置 # 处理异常区间 if anomaly_end - anomaly_start < 3: # 短区间用线性插值 if j < len(values): # 如果异常区间后还有数据点,使用线性插值 for k in range(anomaly_start, anomaly_end + 1): # 线性插值:在基准值和异常区间后第一个正常值之间进行平滑过渡 ratio = (k - anomaly_start + 1) / (anomaly_end - anomaly_start + 2) values[k] = baseline * (1 - ratio) + values[j] * ratio # 确保平滑后的值不低于基准的threshold_ratio values[k] = max(values[k], baseline * threshold_ratio) else: # 如果异常区间到数据末尾,使用基准值的threshold_ratio填充 for k in range(anomaly_start, anomaly_end + 1): values[k] = baseline * threshold_ratio else: # 长区间使用更简单的平滑方式,避免插值错误 # 使用线性插值来避免非有限值问题 if j < len(values): end_val = values[j] # 为每个点创建线性插值 for k in range(anomaly_start, anomaly_end + 1): fraction = (k - anomaly_start) / (j - anomaly_start) if j > anomaly_start else 0 interpolated = baseline * (1 - fraction) + end_val * fraction values[k] = max(interpolated, baseline * threshold_ratio) else: # 如果异常区间到数据末尾,使用基准值的threshold_ratio填充 for k in range(anomaly_start, anomaly_end + 1): values[k] = baseline * threshold_ratio i = j # 跳过已处理的异常区间 else: i += 1 # 2. 应用Savitzky-Golay滤波进行整体平滑 if len(values) > window_size: # 确保window_size是奇数 if window_size % 2 == 0: window_size += 1 # 应用Savitzky-Golay滤波 try: # 对数据进行平滑,但保留原始的特性 smoothed = savgol_filter(values, window_size, 3) # 确保平滑后的数据不会小于相邻点的threshold_ratio for i in range(1, len(smoothed)): smoothed[i] = max(smoothed[i], smoothed[i-1] * threshold_ratio) values = smoothed except Exception as e: print(f"Savitzky-Golay滤波应用失败: {e}") filtered_df['Value'] = values return filtered_df # 数据加载与预处理函数 # ------------------------------- def load_data(upstream_file, downstream_file, river_level_file=None, flow_file=None, source_name="青龙港"): """ 加载所有相关数据并进行数据质量处理 """ try: # 读取上游和下游数据 upstream_df = pd.read_csv(upstream_file) downstream_df = pd.read_csv(downstream_file) except FileNotFoundError: print("文件未找到,请检查路径") return None # 确保列名一致 upstream_df.columns = ['DateTime', 'TagName', 'Value'] downstream_df.columns = ['DateTime', 'TagName', 'Value'] # 转换时间格式并设置为索引 upstream_df['DateTime'] = pd.to_datetime(upstream_df['DateTime']) downstream_df['DateTime'] = pd.to_datetime(downstream_df['DateTime']) # 设置DateTime为索引 upstream_df.set_index('DateTime', inplace=True) downstream_df.set_index('DateTime', inplace=True) # 应用盐度数据异常过滤方法s upstream_df = filter_salinity_anomalies(upstream_df, threshold_ratio=0.5, window_size=7, max_days=1) downstream_df = filter_salinity_anomalies(downstream_df, threshold_ratio=0.5, window_size=7, max_days=1) # 处理低盐度值(小于5) # 不直接过滤,而是标记为NaN并使用插值方法处理 for df in [upstream_df, downstream_df]: # 标记低盐度值为NaN low_salinity_mask = df['Value'] < 5 if low_salinity_mask.any(): print(f"发现{low_salinity_mask.sum()}个低盐度值(<5),将使用插值处理") df.loc[low_salinity_mask, 'Value'] = np.nan # 对短期缺失使用线性插值 df['Value'] = df['Value'].interpolate(method='linear', limit=4) # 对较长期缺失使用基于时间的插值 df['Value'] = df['Value'].interpolate(method='time', limit=24) # 对剩余缺失使用前向和后向填充 df['Value'] = df['Value'].fillna(method='ffill').fillna(method='bfill') # 使用更小的窗口进行平滑处理 df['Value'] = df['Value'].rolling(window=6, center=True, min_periods=1).median() # 重命名Value列 upstream_df = upstream_df.rename(columns={'Value': 'upstream'})[['upstream']] downstream_df = downstream_df.rename(columns={'Value': 'downstream'})[['downstream']] # 合并数据 merged_df = pd.merge(upstream_df, downstream_df, left_index=True, right_index=True, how='inner') # 记录数据源名称 merged_df['source_name'] = source_name # 加载长江水位数据 if river_level_file: try: river_level_df = pd.read_csv(river_level_file) print(f"成功读取水位数据文件: {river_level_file}") # 确保列名一致 if len(river_level_df.columns) >= 3: river_level_df.columns = ['DateTime', 'TagName', 'Value'] elif len(river_level_df.columns) == 2: river_level_df.columns = ['DateTime', 'Value'] river_level_df['TagName'] = 'water_level' # 数据处理 river_level_df['DateTime'] = pd.to_datetime(river_level_df['DateTime']) river_level_df.set_index('DateTime', inplace=True) river_level_df['Value'] = pd.to_numeric(river_level_df['Value'], errors='coerce') # 使用IQR方法处理异常值 Q1 = river_level_df['Value'].quantile(0.25) Q3 = river_level_df['Value'].quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR river_level_df.loc[river_level_df['Value'] < lower_bound, 'Value'] = lower_bound river_level_df.loc[river_level_df['Value'] > upper_bound, 'Value'] = upper_bound # 重命名并保留需要的列 river_level_df = river_level_df.rename(columns={'Value': 'water_level'})[['water_level']] # 合并到主数据框 merged_df = pd.merge(merged_df, river_level_df, left_index=True, right_index=True, how='left') # 对水位数据进行插值处理 merged_df['water_level'] = merged_df['water_level'].interpolate(method='time', limit=24) merged_df['water_level'] = merged_df['water_level'].fillna(method='ffill').fillna(method='bfill') # 创建平滑的水位数据 merged_df['water_level_smooth'] = merged_df['water_level'].rolling(window=24, min_periods=1, center=True).mean() # 添加水位趋势特征 merged_df['water_level_trend_1h'] = merged_df['water_level_smooth'].diff(1) merged_df['water_level_trend_24h'] = merged_df['water_level_smooth'].diff(24) print(f"水位数据加载成功,范围: {merged_df['water_level'].min()} - {merged_df['water_level'].max()}") except Exception as e: print(f"水位数据加载失败: {str(e)}") # 加载大通流量数据 if flow_file: try: flow_df = pd.read_csv(flow_file) print(f"成功读取流量数据文件: {flow_file}") # 确保列名一致 if len(flow_df.columns) >= 3: flow_df.columns = ['DateTime', 'TagName', 'Value'] elif len(flow_df.columns) == 2: flow_df.columns = ['DateTime', 'Value'] flow_df['TagName'] = 'flow' # 数据处理 flow_df['DateTime'] = pd.to_datetime(flow_df['DateTime']) flow_df.set_index('DateTime', inplace=True) flow_df['Value'] = pd.to_numeric(flow_df['Value'], errors='coerce') # 使用IQR方法处理异常值 Q1 = flow_df['Value'].quantile(0.25) Q3 = flow_df['Value'].quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR flow_df.loc[flow_df['Value'] < lower_bound, 'Value'] = lower_bound flow_df.loc[flow_df['Value'] > upper_bound, 'Value'] = upper_bound # 重命名并保留需要的列 flow_df = flow_df.rename(columns={'Value': 'flow'})[['flow']] # 合并到主数据框 merged_df = pd.merge(merged_df, flow_df, left_index=True, right_index=True, how='left') # 对流量数据进行插值处理 merged_df['flow'] = merged_df['flow'].interpolate(method='time', limit=24) merged_df['flow'] = merged_df['flow'].fillna(method='ffill').fillna(method='bfill') # 创建平滑的流量数据 merged_df['flow_smooth'] = merged_df['flow'].rolling(window=24, min_periods=1, center=True).mean() # 添加流量趋势特征 merged_df['flow_trend_1h'] = merged_df['flow_smooth'].diff(1) merged_df['flow_trend_24h'] = merged_df['flow_smooth'].diff(24) # 添加流量统计特征 merged_df['mean_1d_flow'] = merged_df['flow_smooth'].rolling(window=24, min_periods=1).mean() merged_df['mean_3d_flow'] = merged_df['flow_smooth'].rolling(window=72, min_periods=1).mean() merged_df['std_1d_flow'] = merged_df['flow_smooth'].rolling(window=24, min_periods=1).std() # 添加流量变化特征 merged_df['flow_change_1h'] = merged_df['flow_smooth'].diff(1) merged_df['flow_change_24h'] = merged_df['flow_smooth'].diff(24) print(f"流量数据加载成功,范围: {merged_df['flow'].min()} - {merged_df['flow'].max()} m³/s") except Exception as e: print(f"流量数据加载失败: {str(e)}") # 对盐度数据进行插值和平滑处理 merged_df['upstream'] = merged_df['upstream'].interpolate(method='time', limit=24) merged_df['downstream'] = merged_df['downstream'].interpolate(method='time', limit=24) # 使用前向后向填充处理剩余的NaN值 merged_df['upstream'] = merged_df['upstream'].ffill().bfill() merged_df['downstream'] = merged_df['downstream'].ffill().bfill() # 创建平滑的盐度数据 merged_df['upstream_smooth'] = merged_df['upstream'].rolling(window=24, min_periods=1, center=True).mean() merged_df['downstream_smooth'] = merged_df['downstream'].rolling(window=24, min_periods=1, center=True).mean() # 添加趋势特征 merged_df['upstream_trend_1h'] = merged_df['upstream_smooth'].diff(1) merged_df['upstream_trend_24h'] = merged_df['upstream_smooth'].diff(24) merged_df['downstream_trend_1h'] = merged_df['downstream_smooth'].diff(1) merged_df['downstream_trend_24h'] = merged_df['downstream_smooth'].diff(24) # 填充NaN值 merged_df['upstream_trend_1h'] = merged_df['upstream_trend_1h'].fillna(0) merged_df['upstream_trend_24h'] = merged_df['upstream_trend_24h'].fillna(0) merged_df['downstream_trend_1h'] = merged_df['downstream_trend_1h'].fillna(0) merged_df['downstream_trend_24h'] = merged_df['downstream_trend_24h'].fillna(0) # 对低盐度部分使用更大的窗口进行平滑 low_sal_mask = merged_df['upstream'] < 50 if low_sal_mask.any(): merged_df.loc[low_sal_mask, 'upstream_smooth'] = merged_df.loc[low_sal_mask, 'upstream']\ .rolling(window=48, min_periods=1, center=True).mean() # 数据验证和统计 print("\n数据质量统计:") print(f"总数据量: {len(merged_df)}") print(f"上游({source_name})盐度范围: {merged_df['upstream_smooth'].min():.2f} - {merged_df['upstream_smooth'].max():.2f}") print(f"下游(陈行)盐度范围: {merged_df['downstream_smooth'].min():.2f} - {merged_df['downstream_smooth'].max():.2f}") if 'water_level' in merged_df.columns: print(f"水位范围: {merged_df['water_level_smooth'].min():.2f} - {merged_df['water_level_smooth'].max():.2f}") print(f"水位缺失比例: {merged_df['water_level_smooth'].isna().mean()*100:.2f}%") if 'flow' in merged_df.columns: print(f"流量范围: {merged_df['flow_smooth'].min():.2f} - {merged_df['flow_smooth'].max():.2f} m³/s") print(f"流量缺失比例: {merged_df['flow_smooth'].isna().mean()*100:.2f}%") # 重置索引,将DateTime作为列 merged_df = merged_df.reset_index() return merged_df def resample_to_hourly(df): """ 将分钟级数据重采样为小时级数据,计算每小时的平均值 """ try: # 确保DateTime是索引 if 'DateTime' in df.columns: df = df.set_index('DateTime') # 获取所有数值列 numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() # 按小时重采样,计算平均值 hourly_df = df[numeric_columns].resample('H').mean() # 重置索引,将DateTime作为列 hourly_df = hourly_df.reset_index() print(f"数据已从分钟级重采样为小时级,原始数据行数: {len(df)},重采样后行数: {len(hourly_df)}") return hourly_df except Exception as e: print(f"重采样数据异常: {e}") return df # # 测试 # df = load_data('yuce_data/青龙港1.csv', 'yuce_data/一取水.csv') # # 将数据重采样为小时级 # df = resample_to_hourly(df) # df.to_csv('merged_data_hour.csv', index=False) # print(f"Merged data saved to 'merged_data_hour.csv' successfully") # # 绘制盐度随时间变化图 # plt.figure(figsize=(12, 6)) # plt.plot(df['DateTime'], df['upstream_smooth'], label='上游盐度', color='blue') # plt.plot(df['DateTime'], df['downstream_smooth'], label='下游盐度', color='red') # plt.axhline(y=250, color='red', linestyle='--', alpha=0.7, linewidth=1.5, label='盐度警戒线 (250)') # plt.xlabel('时间') # plt.ylabel('盐度') # plt.title('盐度随时间变化图') # plt.legend() # plt.grid(True) # plt.tight_layout() # plt.savefig('salinity_time_series.png', dpi=300) # plt.show() # ------------------------------- # 添加农历(潮汐)特征 # ------------------------------- def add_lunar_features(df): lunar_day, lunar_phase_sin, lunar_phase_cos, is_high_tide = [], [], [], [] # 新增潮汐权重特征 tide_weight, tide_period_type = [], [] for dt in df['DateTime']: ld = LunarDate.fromSolarDate(dt.year, dt.month, dt.day) lunar_day.append(ld.day) # 基础潮汐周期特征(正弦和余弦变换) lunar_phase_sin.append(np.sin(2 * np.pi * ld.day / 15)) lunar_phase_cos.append(np.cos(2 * np.pi * ld.day / 15)) # 大潮期(农历初一至初五及十六至二十)标记为1,其他为0 is_high = 1 if (ld.day <= 5 or (ld.day >= 16 and ld.day <= 20)) else 0 is_high_tide.append(is_high) # 增加潮汐周期类型 # 1: 大活汛期(农历初一至初五及十六至二十) # 2: 死汛期前段(农历初六至十五) # 3: 死汛期后段(农历二十一至月末) if ld.day <= 5 or (ld.day >= 16 and ld.day <= 20): period_type = 1 # 大活汛期 elif ld.day >= 6 and ld.day <= 15: period_type = 2 # 死汛期前段 else: period_type = 3 # 死汛期后段 tide_period_type.append(period_type) # 根据潮汐周期类型和具体农历日分配权重 # 大活汛期权重较高,死汛期权重较低 if period_type == 1: # 大活汛期 # 初一/十六权重最高,递减至初五/二十 if ld.day <= 5: weight = 1.0 - (ld.day - 1) * 0.1 # 1.0, 0.9, 0.8, 0.7, 0.6 else: weight = 1.0 - (ld.day - 16) * 0.1 # 1.0, 0.9, 0.8, 0.7, 0.6 elif period_type == 2: # 死汛期前段 # 权重稍低且平缓变化 weight = 0.5 - (ld.day - 6) * 0.02 # 从0.5慢慢降到0.3 else: # 死汛期后段 # 权重稍低且平缓变化 weight = 0.5 - (ld.day - 21) * 0.02 # 从0.5慢慢降到0.3 tide_weight.append(weight) # 添加原有特征 df['lunar_day'] = lunar_day df['lunar_phase_sin'] = lunar_phase_sin df['lunar_phase_cos'] = lunar_phase_cos df['is_high_tide'] = is_high_tide # 添加新的潮汐特征 df['tide_weight'] = tide_weight df['tide_period_type'] = tide_period_type # 添加潮汐45分钟延迟特征 # 每天潮汐时间后延约45分钟,对应角度变化约11.25度(360度/24小时*0.75小时) hour_values = df['DateTime'].dt.hour + df['DateTime'].dt.minute / 60.0 # 计算潮汐时间延迟的周期性特征 # 将lunar_day转换为numpy数组进行计算 lunar_day_array = np.array(lunar_day) # 基于农历日与时间的组合,表示具体某天某时的潮汐状态 df['tide_time_sin'] = np.sin(2 * np.pi * (hour_values / 12 + lunar_day_array * 0.75 / 12)) df['tide_time_cos'] = np.cos(2 * np.pi * (hour_values / 12 + lunar_day_array * 0.75 / 12)) # 添加潮汐强度与盐度相关性的特征 # 组合潮汐权重与时间特征 df['tide_salt_factor'] = df['tide_weight'] * (1 + 0.5 * np.sin(2 * np.pi * hour_values / 12)) return df # ------------------------------- # 生成延迟特征(向量化) # ------------------------------- def batch_create_delay_features(df, delay_hours): """ 为数据框中的特定列创建延迟特征 """ # 定义需要创建延迟特征的列 target_columns = ['upstream_smooth'] # target_columns = ['upstream_smooth', 'downstream_smooth'] # # 如果存在水位数据列,也为它创建延迟特征 暂时不使用 # if 'water_level_smooth' in df.columns: # target_columns.append('water_level_smooth') # elif 'water_level' in df.columns: # print("注意: 水位平滑列不存在,使用原始水位列创建延迟特征") # # 创建水位平滑列 # df['water_level_smooth'] = df['water_level'].rolling(window=24, min_periods=1, center=True).mean() # df['water_level_smooth'] = df['water_level_smooth'].fillna(df['water_level']) # target_columns.append('water_level_smooth') # 创建延迟特征 for column in target_columns: if column in df.columns: for delay in delay_hours: df[f'{column.split("_")[0]}_delay_{delay}h'] = df[column].shift(delay) else: print(f"警告: 列 {column} 不存在,跳过创建延迟特征") return df # 生成其他特征 def generate_features(df): """ 生成其他特征,包括历史数据、时间特征、统计特征和外部特征,并将这些特征添加到原始DataFrame中 """ try: # 创建平滑的盐度数据 df['upstream_smooth'] = df['upstream'].rolling(window=24, min_periods=1, center=True).mean() df['downstream_smooth'] = df['downstream'].rolling(window=24, min_periods=1, center=True).mean() # 时间特征 df['hour'] = df['DateTime'].dt.hour df['weekday'] = df['DateTime'].dt.dayofweek df['month'] = df['DateTime'].dt.month # 时间特征的sin和cos转换 df['hour_sin'] = np.sin(2 * np.pi * df['hour'] / 24) df['hour_cos'] = np.cos(2 * np.pi * df['hour'] / 24) df['weekday_sin'] = np.sin(2 * np.pi * df['weekday'] / 7) df['weekday_cos'] = np.cos(2 * np.pi * df['weekday'] / 7) df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12) df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12) # 统计特征 df['mean_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).mean() df['mean_3d_up'] = df['upstream_smooth'].rolling(window=72, min_periods=1).mean() df['std_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).std() df['mean_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).mean() df['mean_3d_down'] = df['downstream_smooth'].rolling(window=72, min_periods=1).mean() df['std_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).std() # 趋势特征 df['trend_1h_up'] = df['upstream_smooth'].diff(1) df['trend_3h_up'] = df['upstream_smooth'].diff(3) df['trend_6h_up'] = df['upstream_smooth'].diff(6) df['trend_12h_up'] = df['upstream_smooth'].diff(12) df['trend_24h_up'] = df['upstream_smooth'].diff(24) df['trend_1h_down'] = df['downstream_smooth'].diff(1) df['trend_3h_down'] = df['downstream_smooth'].diff(3) df['trend_6h_down'] = df['downstream_smooth'].diff(6) df['trend_12h_down'] = df['downstream_smooth'].diff(12) df['trend_24h_down'] = df['downstream_smooth'].diff(24) # 外部特征(水位和流量) if 'water_level_smooth' in df.columns: df['water_level_trend_1h'] = df['water_level_smooth'].diff(1) df['water_level_trend_24h'] = df['water_level_smooth'].diff(24) df['mean_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).mean() df['mean_3d_water_level'] = df['water_level_smooth'].rolling(window=72, min_periods=1).mean() df['std_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).std() if 'flow_smooth' in df.columns: df['flow_trend_1h'] = df['flow_smooth'].diff(1) df['flow_trend_24h'] = df['flow_smooth'].diff(24) df['mean_1d_flow'] = df['flow_smooth'].rolling(window=24, min_periods=1).mean() df['mean_3d_flow'] = df['flow_smooth'].rolling(window=72, min_periods=1).mean() df['std_1d_flow'] = df['flow_smooth'].rolling(window=24, min_periods=1).std() # 新增:增强短期连续性特征 - 为提高第一天预测准确性 # 最近几小时的细粒度盐度变化特征 for h in [1, 2, 3, 4, 6, 8, 12]: # 分别计算上游和下游盐度的近期变化率 df[f'recent_{h}h_rate_down'] = (df['downstream_smooth'] - df['downstream_smooth'].shift(h)) / h df[f'recent_{h}h_rate_up'] = (df['upstream_smooth'] - df['upstream_smooth'].shift(h)) / h # 最近24小时的加权移动平均,赋予最近数据更高权重 weights_24h = np.linspace(0.1, 1.0, 24) # 线性递增权重 df['weighted_24h_down'] = df['downstream_smooth'].rolling(window=24).apply( lambda x: np.sum(x * weights_24h[:len(x)]) / np.sum(weights_24h[:len(x)]), raw=True ) df['weighted_24h_up'] = df['upstream_smooth'].rolling(window=24).apply( lambda x: np.sum(x * weights_24h[:len(x)]) / np.sum(weights_24h[:len(x)]), raw=True ) # 最近数小时的指数平滑特征 alpha = 0.3 # 平滑因子 df['exp_smooth_down'] = df['downstream_smooth'].ewm(alpha=alpha, adjust=False).mean() df['exp_smooth_up'] = df['upstream_smooth'].ewm(alpha=alpha, adjust=False).mean() # 最近变化趋势的稳定性/波动性特征 df['trend_stability_12h_down'] = df['trend_1h_down'].rolling(window=12).std() / df['downstream_smooth'].rolling(window=12).mean() df['trend_stability_12h_up'] = df['trend_1h_up'].rolling(window=12).std() / df['upstream_smooth'].rolling(window=12).mean() # 计算短期趋势的加速度(变化率的变化率) df['trend_acceleration_down'] = df['trend_1h_down'].diff(1) df['trend_acceleration_up'] = df['trend_1h_up'].diff(1) return df except Exception as e: print(f"特征生成异常: {e}") return df # ------------------------------- # 主程序入口:加载数据、添加特征、生成延迟特征后启动GUI # ------------------------------- def save_processed_data(df, filename='processed_data.pkl'): try: df.to_pickle(filename) print(f"已保存处理后的数据到 {filename}") return True except Exception as e: print(f"保存数据失败: {e}") return False def load_processed_data(filename='processed_data.pkl'): try: if os.path.exists(filename): df = pd.read_pickle(filename) print(f"已从 {filename} 加载处理后的数据") return df else: print(f"找不到处理后的数据文件 {filename}") return None except Exception as e: print(f"加载数据失败: {e}") return None def load_both_datasets(): """加载两个数据源的数据集""" global cached_model, last_training_time # 删除旧的处理数据和模型文件,以应用修复后的代码 for file in ['processed_data_qinglong.pkl', 'processed_data_taicang.pkl', 'salinity_model_qinglong.pkl', 'salinity_model_taicang.pkl']: if os.path.exists(file): try: os.remove(file) print(f"已删除旧的文件: {file}") except Exception as e: print(f"删除文件失败: {file} - {e}") # 加载青龙港-陈行数据集 qinglong_df = load_processed_data('processed_data_qinglong.pkl') if qinglong_df is None: # 创建新的数据集 print("正在处理青龙港-陈行数据集...") qinglong_df = load_data('yuce_data\青龙港盐度1.csv', 'yuce_data\陈行第一取水口盐度.csv', 'yuce_data\长江液位.csv', 'yuce_data\大通流量.csv', source_name="青龙港") # 将数据重采样为小时级 qinglong_df = resample_to_hourly(qinglong_df) if qinglong_df is not None: # 添加时间特征 qinglong_df['hour'] = qinglong_df['DateTime'].dt.hour qinglong_df['weekday'] = qinglong_df['DateTime'].dt.dayofweek qinglong_df['month'] = qinglong_df['DateTime'].dt.month # 添加农历特征 qinglong_df = add_lunar_features(qinglong_df) # 添加延迟特征 (青龙港-陈行: 3-7天) delay_hours = [36,39,42,45,48,51,54,57,60,72,78,84,90,96,102,108,114,120,126,132,138,144,150,156,162,168] qinglong_df = batch_create_delay_features(qinglong_df, delay_hours) # 添加统计特征 qinglong_df = generate_features(qinglong_df) # 保存处理后的数据 save_processed_data(qinglong_df, 'processed_data_qinglong.pkl') print("青龙港-陈行数据集处理完成") else: print("已从缓存加载青龙港-陈行数据集") # 加载太仓石化-陈行数据集 taicang_df = load_processed_data('processed_data_taicang.pkl') if taicang_df is None: # 创建新的数据集 print("正在处理太仓石化-陈行数据集...") taicang_df = load_data('yuce_data\太仓石化盐度2.csv', 'yuce_data\陈行第一取水口盐度.csv', 'yuce_data\长江液位.csv', 'yuce_data\大通流量.csv', source_name="太仓石化") # 将数据重采样为小时级 taicang_df = resample_to_hourly(taicang_df) if taicang_df is not None: # 添加时间特征 taicang_df['hour'] = taicang_df['DateTime'].dt.hour taicang_df['weekday'] = taicang_df['DateTime'].dt.dayofweek taicang_df['month'] = taicang_df['DateTime'].dt.month # 添加农历特征 taicang_df = add_lunar_features(taicang_df) # 添加延迟特征 (太仓石化-陈行: 1-3天) delay_hours = [1,2,3,4,5,6,8,10,12,14,16,18,24,30,36,42,48,54,60,66,72] taicang_df = batch_create_delay_features(taicang_df, delay_hours) # 添加统计特征 taicang_df = generate_features(taicang_df) # 保存处理后的数据 save_processed_data(taicang_df, 'processed_data_taicang.pkl') print("太仓石化-陈行数据集处理完成") else: print("已从缓存加载太仓石化-陈行数据集") return qinglong_df, taicang_df # ------------------------------- # 模型训练与预测,展示验证准确度(RMSE, MAE) # ------------------------------- def train_and_predict(df, start_time, force_retrain=False): global cached_model, last_training_time, prediction_mode # 根据当前预测模式选择模型缓存文件 if prediction_mode == "青龙港-陈行": model_cache_file = 'salinity_model_qinglong.pkl' scaler_cache_file = 'scaler_qinglong.pkl' else: # 太仓石化-陈行 model_cache_file = 'salinity_model_taicang.pkl' scaler_cache_file = 'scaler_taicang.pkl' model_needs_training = True scaler = None # 初始化特征缩放器 model_data = None # 初始化model_data变量 if os.path.exists(model_cache_file) and force_retrain: try: os.remove(model_cache_file) if os.path.exists(scaler_cache_file): os.remove(scaler_cache_file) print("已删除旧模型缓存(强制重新训练)") except Exception as e: print("删除缓存异常:", e) # 准备训练数据 train_df = df[df['DateTime'] < start_time].copy() test_X, test_y = create_features_vectorized(train_df, look_back=7, forecast_horizon=1) if test_X is None or test_y is None: print("特征生成失败") return None, None, None, None current_feature_dim = test_X.shape[1] if len(test_X) > 0 else 0 print(f"当前特征维度: {current_feature_dim}") # 检查缓存模型 cached_feature_dim = None if not force_retrain and cached_model is not None and last_training_time is not None: if last_training_time >= train_df['DateTime'].max(): try: cached_feature_dim = cached_model['xgb'].n_features_in_ print(f"缓存模型特征维度: {cached_feature_dim}") if cached_feature_dim == current_feature_dim: model_needs_training = False print(f"使用缓存模型,训练时间: {last_training_time}") # 加载特征缩放器 if os.path.exists(scaler_cache_file): with open(scaler_cache_file, 'rb') as f: scaler = pickle.load(f) print("从缓存加载特征缩放器") else: print(f"特征维度不匹配(缓存模型: {cached_feature_dim},当前: {current_feature_dim}),需要重新训练") except Exception as e: print(f"检查模型特征维度失败: {e}") elif not force_retrain and os.path.exists(model_cache_file): try: with open(model_cache_file, 'rb') as f: model_data = pickle.load(f) cached_model = model_data['models'] last_training_time = model_data['training_time'] try: cached_feature_dim = cached_model['xgb'].n_features_in_ print(f"文件缓存模型特征维度: {cached_feature_dim}") if cached_feature_dim == current_feature_dim: if last_training_time >= train_df['DateTime'].max(): model_needs_training = False print(f"从文件加载模型,训练时间: {last_training_time}") # 加载特征缩放器 if os.path.exists(scaler_cache_file): with open(scaler_cache_file, 'rb') as f: scaler = pickle.load(f) print("从文件加载特征缩放器") else: print(f"训练时间不足,需要重新训练") model_needs_training = True else: print(f"特征维度不匹配(文件模型: {cached_feature_dim},当前: {current_feature_dim}),需要重新训练") except Exception as e: print(f"检查模型特征维度失败: {e}") model_needs_training = True except Exception as e: print("加载模型失败:", e) model_needs_training = True # 训练新模型 if model_needs_training: print(f"开始训练新{prediction_mode}模型...") if len(train_df) < 100: print("训练数据不足") return None, None, None, None start_train = time() X, y = create_features_vectorized(train_df, look_back=7, forecast_horizon=1) if X is None or y is None or len(X) == 0 or len(y) == 0: print("特征生成失败或样本不足") return None, None, None, None print(f"训练样本数量: {X.shape[0]}, 特征维度: {X.shape[1]}") # 为特征生成名称(用于分析) feature_names = generate_feature_names(train_df, X.shape[1]) # 特征归一化处理 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) print("特征已归一化处理") # 保存特征缩放器 with open(scaler_cache_file, 'wb') as f: pickle.dump(scaler, f) print(f"特征缩放器已保存至 {scaler_cache_file}") # 分割训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(X_scaled, y, test_size=0.15, random_state=42) print(f"训练集: {X_train.shape[0]}样本, 验证集: {X_val.shape[0]}样本") try: # 训练多个模型 models = {} predictions = {} metrics = {} # 1. 训练标准XGBoost回归模型 print("训练XGBoost模型...") xgb_model = XGBRegressor( n_estimators=300, learning_rate=0.05, max_depth=6, min_child_weight=2, subsample=0.8, colsample_bytree=0.8, gamma=0.1, reg_alpha=0.1, reg_lambda=1.0, n_jobs=-1, random_state=42, early_stopping_rounds=20 ) xgb_model.fit(X_train, y_train, eval_set=[(X_val, y_val)], eval_metric='rmse', verbose=False) models['xgb'] = xgb_model # 在验证集上评估 xgb_preds = xgb_model.predict(X_val) predictions['xgb'] = xgb_preds xgb_rmse = np.sqrt(mean_squared_error(y_val, xgb_preds)) xgb_mae = mean_absolute_error(y_val, xgb_preds) metrics['xgb'] = {'rmse': xgb_rmse, 'mae': xgb_mae} print(f"XGBoost - RMSE: {xgb_rmse:.4f}, MAE: {xgb_mae:.4f}") # 2. 训练XGBoost随机森林版本模型 print("训练XGBoost随机森林模型...") xgbrf_model = XGBRFRegressor( n_estimators=300, max_depth=7, subsample=0.8, colsample_bytree=0.8, reg_alpha=0.05, reg_lambda=1.0, n_jobs=-1, random_state=42 ) xgbrf_model.fit(X_train, y_train) models['xgbrf'] = xgbrf_model # 在验证集上评估 xgbrf_preds = xgbrf_model.predict(X_val) predictions['xgbrf'] = xgbrf_preds xgbrf_rmse = np.sqrt(mean_squared_error(y_val, xgbrf_preds)) xgbrf_mae = mean_absolute_error(y_val, xgbrf_preds) metrics['xgbrf'] = {'rmse': xgbrf_rmse, 'mae': xgbrf_mae} print(f"XGBoost RF - RMSE: {xgbrf_rmse:.4f}, MAE: {xgbrf_mae:.4f}") # 3. 训练随机森林模型 print("训练随机森林模型...") rf_model = RandomForestRegressor( n_estimators=200, max_depth=10, min_samples_split=5, min_samples_leaf=2, max_features='sqrt', n_jobs=-1, random_state=42 ) rf_model.fit(X_train, y_train) models['rf'] = rf_model # 在验证集上评估 rf_preds = rf_model.predict(X_val) predictions['rf'] = rf_preds rf_rmse = np.sqrt(mean_squared_error(y_val, rf_preds)) rf_mae = mean_absolute_error(y_val, rf_preds) metrics['rf'] = {'rmse': rf_rmse, 'mae': rf_mae} print(f"随机森林 - RMSE: {rf_rmse:.4f}, MAE: {rf_mae:.4f}") # 计算加权融合权重(基于各模型的RMSE取倒数) total_weight = 1/xgb_rmse + 1/xgbrf_rmse + 1/rf_rmse weights = { 'xgb': 1/xgb_rmse / total_weight, 'xgbrf': 1/xgbrf_rmse / total_weight, 'rf': 1/rf_rmse / total_weight } print(f"模型权重: XGBoost={weights['xgb']:.2f}, XGBRF={weights['xgbrf']:.2f}, RF={weights['rf']:.2f}") # 融合预测 ensemble_preds = weights['xgb'] * xgb_preds + weights['xgbrf'] * xgbrf_preds + weights['rf'] * rf_preds ensemble_rmse = np.sqrt(mean_squared_error(y_val, ensemble_preds)) ensemble_mae = mean_absolute_error(y_val, ensemble_preds) print(f"融合模型 - RMSE: {ensemble_rmse:.4f}, MAE: {ensemble_mae:.4f}") # 分析特征重要性 feature_importance = xgb_model.feature_importances_ sorted_idx = np.argsort(feature_importance)[::-1] print(f"\n{prediction_mode}模型 前15重要特征:") for i in range(min(15, len(sorted_idx))): print(f"{i+1}. {feature_names[sorted_idx[i]]}: {feature_importance[sorted_idx[i]]:.6f}") # 保存所有模型和权重 cached_model = models last_training_time = start_time model_data = { 'models': models, 'weights': weights, 'training_time': last_training_time, 'feature_columns': feature_names, 'metrics': { 'xgb_rmse': xgb_rmse, 'xgb_mae': xgb_mae, 'ensemble_rmse': ensemble_rmse, 'ensemble_mae': ensemble_mae }, 'feature_dim': current_feature_dim } with open(model_cache_file, 'wb') as f: pickle.dump(model_data, f) print(f"{prediction_mode}模型训练完成,耗时: {time() - start_train:.2f}秒") except Exception as e: print(f"模型训练异常: {e}") import traceback traceback.print_exc() return None, None, None, None else: models = cached_model # 加载权重和指标 with open(model_cache_file, 'rb') as f: model_data = pickle.load(f) weights = model_data.get('weights', {'xgb': 0.6, 'xgbrf': 0.25, 'rf': 0.15}) # 预测部分 try: if scaler is None and os.path.exists(scaler_cache_file): with open(scaler_cache_file, 'rb') as f: scaler = pickle.load(f) print("预测前加载特征缩放器") # 初始化预测结果 future_dates = [start_time + timedelta(days=i) for i in range(5)] predictions = np.zeros(5) # 创建预测特征 X_pred = [] for i in range(5): current_date = future_dates[i] features = generate_prediction_features(df, current_date, look_back=7) if features is None: print(f"生成预测特征失败: {current_date}") return None, None, None, None X_pred.append(features) # 特征归一化 X_pred = np.array(X_pred) if scaler is not None: X_pred = scaler.transform(X_pred) print("预测特征已归一化") # 使用多模型预测 model_predictions = {} for model_name, model in models.items(): model_predictions[model_name] = model.predict(X_pred) # 模型融合 ensemble_predictions = np.zeros(len(future_dates)) for model_name, weight in weights.items(): ensemble_predictions += weight * model_predictions[model_name] # 计算预测的置信区间 train_std = 10.0 # 默认误差估计 if model_data and 'metrics' in model_data and 'ensemble_rmse' in model_data['metrics']: train_std = model_data['metrics']['ensemble_rmse'] prediction_intervals = np.array([ ensemble_predictions - 1.96 * train_std, ensemble_predictions + 1.96 * train_std ]) # 打印各模型的预测结果 print("\n各模型预测结果:") for date, xgb_pred, xgbrf_pred, rf_pred, ens_pred in zip( future_dates, model_predictions['xgb'], model_predictions['xgbrf'], model_predictions['rf'], ensemble_predictions ): print(f"{date.strftime('%Y-%m-%d')} - XGB: {xgb_pred:.2f}, XGBRF: {xgbrf_pred:.2f}, RF: {rf_pred:.2f}, 融合: {ens_pred:.2f}") return future_dates, ensemble_predictions, models, prediction_intervals except Exception as e: print(f"预测过程异常: {e}") import traceback traceback.print_exc() return None, None, None, None # 添加特征名称生成函数 def generate_feature_names(df, feature_dim): """为特征矩阵生成可读的特征名称""" feature_names = [] # 获取所有数值列 numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() if 'DateTime' in numeric_columns: numeric_columns.remove('DateTime') # 为每个时间步和每个数值列创建特征名称 for i in range(7): for col in numeric_columns: feature_names.append(f'{col}_t{i}') # 添加时间特征名称 feature_names.extend(['month', 'day', 'weekday']) # 添加额外的统计特征名称(针对最后24小时的特征) feature_names.extend([ 'recent_downstream_mean', 'recent_downstream_std', 'recent_downstream_change', 'recent_downstream_rate' ]) # 确保特征名称数量与特征维度匹配 if len(feature_names) != feature_dim: print(f"特征名称数量({len(feature_names)})与特征维度({feature_dim})不匹配") # 使用自动生成的特征名称 feature_names = [f'feature_{i}' for i in range(feature_dim)] return feature_names # ------------------------------- # 获取模型准确度指标 # ------------------------------- def get_model_metrics(): """获取保存在模型缓存中的准确度指标""" global prediction_mode # 根据当前预测模式选择模型缓存文件 if prediction_mode == "青龙港-陈行": model_cache_file = 'salinity_model_qinglong.pkl' else: # 太仓石化-陈行 model_cache_file = 'salinity_model_taicang.pkl' if os.path.exists(model_cache_file): try: with open(model_cache_file, 'rb') as f: model_data = pickle.load(f) # 适配新的数据结构 if 'metrics' in model_data: # 新版本数据结构 return { 'rmse': model_data['metrics'].get('ensemble_rmse', 0), 'mae': model_data['metrics'].get('ensemble_mae', 0) } elif 'rmse' in model_data and 'mae' in model_data: # 旧版本数据结构 return { 'rmse': model_data.get('rmse', 0), 'mae': model_data.get('mae', 0) } else: # 无效的数据结构 print("无效的模型指标数据结构") return {'rmse': 0, 'mae': 0} except Exception as e: print(f"获取模型指标失败: {e}") # 如果无法获取到指标,返回默认值 return {'rmse': 0, 'mae': 0} def run_gui(): """运行GUI界面""" global qinglong_df, taicang_df def configure_gui_fonts(): font_names = ['微软雅黑', 'Microsoft YaHei', 'SimSun', 'SimHei'] for font_name in font_names: try: default_font = tkfont.nametofont("TkDefaultFont") default_font.configure(family=font_name) text_font = tkfont.nametofont("TkTextFont") text_font.configure(family=font_name) fixed_font = tkfont.nametofont("TkFixedFont") fixed_font.configure(family=font_name) return True except Exception as e: continue return False def switch_prediction_mode(): global prediction_mode, current_df, df, cached_model, last_training_time # 切换预测模式 if prediction_mode == "青龙港-陈行": prediction_mode = "太仓石化-陈行" current_df = taicang_df switch_button.config(text="切换到青龙港-陈行") else: prediction_mode = "青龙港-陈行" current_df = qinglong_df switch_button.config(text="切换到太仓石化-陈行") # 更新当前数据集 df = current_df # 重置模型缓存 cached_model = None last_training_time = None # 更新标题 root.title(f"{prediction_mode}盐度预测系统") # 更新界面信息 status_label.config(text=f"已切换到{prediction_mode}模式") # 更新模型指标 model_metrics = get_model_metrics() metrics_text = "模型准确度: 未知" if not model_metrics else f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}" metrics_label.config(text=metrics_text) # 显示历史数据 display_history_data() def show_feature_importance(): """显示特征重要性窗口,显示XGBoost的特征重要性""" try: # 检查模型缓存文件 model_cache_file = 'salinity_model_qinglong.pkl' if prediction_mode == "青龙港-陈行" else 'salinity_model_taicang.pkl' if not os.path.exists(model_cache_file): status_label.config(text="无法获取特征重要性信息,请先训练模型") return # 创建新窗口 importance_window = tk.Toplevel(root) importance_window.title(f"{prediction_mode} - 特征重要性分析") importance_window.geometry("800x600") try: with open(model_cache_file, 'rb') as f: model_data = pickle.load(f) # 创建XGBoost特征重要性表格 xgb_frame = ttk.Frame(importance_window, padding=10) xgb_frame.pack(fill=tk.BOTH, expand=True) # 创建特征重要性表格 xgb_tree = ttk.Treeview(xgb_frame, columns=("rank", "feature", "importance"), show="headings") xgb_tree.heading("rank", text="排名") xgb_tree.heading("feature", text="特征名称") xgb_tree.heading("importance", text="重要性") xgb_tree.column("rank", width=50) xgb_tree.column("feature", width=300) xgb_tree.column("importance", width=100) # 添加滚动条 xgb_scrollbar = ttk.Scrollbar(xgb_frame, orient="vertical", command=xgb_tree.yview) xgb_tree.configure(yscrollcommand=xgb_scrollbar.set) # 放置表格和滚动条 xgb_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) xgb_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 获取特征重要性和特征名称 feature_importance = model_data['models']['xgb'].feature_importances_ feature_names = model_data.get('feature_columns', [f'feature_{i}' for i in range(len(feature_importance))]) # 确保特征名称和重要性长度匹配 if len(feature_names) != len(feature_importance): feature_names = [f'feature_{i}' for i in range(len(feature_importance))] # 排序并填充表格 sorted_idx = np.argsort(feature_importance)[::-1] for i, idx in enumerate(sorted_idx): xgb_tree.insert("", tk.END, values=(i+1, feature_names[idx], f"{feature_importance[idx]:.6f}")) # 添加特征重要性条形图 fig_frame = ttk.Frame(importance_window, padding=10) fig_frame.pack(fill=tk.BOTH, expand=True) # 仅显示前20个重要特征 top_n = min(20, len(sorted_idx)) top_features = [feature_names[idx] for idx in sorted_idx[:top_n]] top_importance = [feature_importance[idx] for idx in sorted_idx[:top_n]] fig, ax = plt.subplots(figsize=(7, 4), dpi=100) y_pos = np.arange(len(top_features)) # 创建水平条形图 ax.barh(y_pos, top_importance, align='center') ax.set_yticks(y_pos) # 显示简化的特征名称(避免过长) ax.set_yticklabels([f[:20] + '...' if len(f) > 20 else f for f in top_features]) ax.invert_yaxis() # 最重要的在顶部 ax.set_xlabel('特征重要性') ax.set_title('XGBoost Top 20 特征重要性') canvas = FigureCanvasTkAgg(fig, master=fig_frame) canvas.draw() canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) except Exception as e: print(f"加载XGBoost特征重要性失败: {e}") # 添加关闭按钮 close_button = ttk.Button(importance_window, text="关闭", command=importance_window.destroy) close_button.pack(pady=10) except Exception as e: status_label.config(text=f"显示特征重要性时出错: {str(e)}") import traceback traceback.print_exc() def on_predict(): try: predict_start = time() status_label.config(text="预测中...") root.update() start_time_dt = pd.to_datetime(entry.get()) force_retrain = retrain_var.get() future_dates, predictions, model, prediction_intervals = train_and_predict(df, start_time_dt, force_retrain) if future_dates is None or predictions is None: status_label.config(text="预测失败") return # 获取并显示模型准确度指标 model_metrics = get_model_metrics() if model_metrics and model_metrics['rmse'] > 0: metrics_text = f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}" else: metrics_text = "模型准确度: 未知" metrics_label.config(text=metrics_text) # 清除图形并重新绘制 ax.clear() # 绘制历史数据(预测时间点之前的所有数据) history_end = min(start_time_dt, df['DateTime'].max()) history_start = df['DateTime'].min() # 使用所有可用的历史数据 hist_data = df[(df['DateTime'] >= history_start) & (df['DateTime'] <= history_end)] # 确保数据不为空 if len(hist_data) == 0: status_label.config(text="错误: 所选时间范围内没有历史数据") return # 检查source_name列是否存在,如果不存在则使用默认值 if 'source_name' in hist_data.columns: source = hist_data["source_name"].iloc[0] else: # 根据当前预测模式判断上游名称 source = "青龙港" if prediction_mode == "青龙港-陈行" else "太仓石化" # 绘制基本数据 ax.plot(hist_data['DateTime'], hist_data['downstream_smooth'], label='陈行(下游)盐度', color='blue', linewidth=1.5) ax.plot(hist_data['DateTime'], hist_data['upstream_smooth'], label=f'{source}(上游)盐度', color='purple', linewidth=1.5, alpha=0.7) # 添加盐度250的标注线 ax.axhline(y=250, color='red', linestyle='--', alpha=0.7, linewidth=1.5, label='盐度警戒线 (250)') # 绘制预测数据 if len(future_dates) > 0 and len(predictions) > 0: ax.plot(future_dates, predictions, marker='o', linestyle='--', label='递归预测盐度', color='red', linewidth=2) # 添加预测的置信区间 if prediction_intervals is not None: ax.fill_between(future_dates, prediction_intervals[0], prediction_intervals[1], color='red', alpha=0.2, label='95% 置信区间') # 绘制实际数据(如果有) actual_data = df[(df['DateTime'] >= start_time_dt) & (df['DateTime'] <= future_dates[-1])] actual_values = None if not actual_data.empty: actual_values = [] # 获取与预测日期最接近的实际数据 for pred_date in future_dates: closest_idx = np.argmin(np.abs(actual_data['DateTime'] - pred_date)) actual_values.append(actual_data['downstream_smooth'].iloc[closest_idx]) # 绘制实际盐度曲线 ax.plot(future_dates, actual_values, marker='s', linestyle='-', label='实际盐度', color='orange', linewidth=2) # 设置图表标题和标签 ax.set_xlabel('日期') ax.set_ylabel('盐度') ax.set_title(f"{prediction_mode}从 {start_time_dt.strftime('%Y-%m-%d %H:%M:%S')} 开始的递归单步盐度预测") # 设置图例并应用紧凑布局 ax.legend(loc='best') fig.tight_layout() # 保存初始视图范围用于重置 global current_view current_view['xlim'] = ax.get_xlim() current_view['ylim'] = ax.get_ylim() # 强制重绘 plt.close(fig) fig.canvas.draw() fig.canvas.flush_events() plt.draw() # 更新预测结果文本 predict_time = time() - predict_start status_label.config(text=f"递归预测完成 (耗时: {predict_time:.2f}秒)") # 显示预测结果 result_text = "递归单步预测结果:\n\n" # 如果有实际值,计算差值和百分比误差 if actual_values is not None: result_text += "日期 预测值 实际值 差值\n" result_text += "--------------------------------------\n" for i, (date, pred, actual) in enumerate(zip(future_dates, predictions, actual_values)): if actual is not None: # 只在有实际值时显示差值 diff = pred - actual result_text += f"{date.strftime('%Y-%m-%d')} {pred:6.2f} {actual:6.2f} {diff:6.2f}\n" else: result_text += f"{date.strftime('%Y-%m-%d')} {pred:6.2f} -- --\n" else: result_text += "日期 预测值\n" result_text += "-------------------\n" for i, (date, pred) in enumerate(zip(future_dates, predictions)): result_text += f"{date.strftime('%Y-%m-%d')} {pred:6.2f}\n" result_text += "\n无实际值进行对比" update_result_text(result_text) except Exception as e: status_label.config(text=f"错误: {str(e)}") import traceback traceback.print_exc() def display_history_data(): """显示历史盐度数据""" try: # 清除图形并重新绘制 ax.clear() # 获取所有历史数据 start_date = df['DateTime'].min() end_date = df['DateTime'].max() hist_data = df.copy() # 使用所有数据 # 确保数据不为空 if len(hist_data) == 0: status_label.config(text="错误: 没有可用的历史数据") return # 绘制基本数据 ax.plot(hist_data['DateTime'], hist_data['downstream_smooth'], label='陈行(下游)盐度', color='blue', linewidth=1.5) # 检查source_name列是否存在,如果不存在则使用默认值 if 'source_name' in hist_data.columns: source = hist_data["source_name"].iloc[0] else: # 根据当前预测模式判断上游名称 source = "青龙港" if prediction_mode == "青龙港-陈行" else "太仓石化" ax.plot(hist_data['DateTime'], hist_data['upstream_smooth'], label=f'{source}(上游)盐度', color='purple', linewidth=1.5, alpha=0.7) # 添加盐度250的标注线 ax.axhline(y=250, color='red', linestyle='--', alpha=0.7, linewidth=1.5, label='盐度警戒线 (250)') # 设置图表标题和标签 ax.set_xlabel('日期') ax.set_ylabel('盐度') ax.set_title(f"{prediction_mode}全部历史盐度数据 ({start_date.strftime('%Y-%m-%d')} 至 {end_date.strftime('%Y-%m-%d')})") # 设置图例并应用紧凑布局 ax.legend(loc='best') fig.tight_layout() # 保存初始视图范围用于重置 global current_view current_view['xlim'] = ax.get_xlim() current_view['ylim'] = ax.get_ylim() # 强制重绘 plt.close(fig) fig.canvas.draw() fig.canvas.flush_events() plt.draw() status_label.config(text=f"显示全部历史数据 ({len(hist_data)} 个数据点)") # 更新结果文本 result_text = "历史盐度统计信息:\n\n" result_text += f"数据时间范围: {start_date.strftime('%Y-%m-%d')} 至 {end_date.strftime('%Y-%m-%d')}\n" result_text += f"数据点数量: {len(hist_data)}\n\n" result_text += f"{source}上游盐度:\n" result_text += f" 最小值: {hist_data['upstream_smooth'].min():.2f}\n" result_text += f" 最大值: {hist_data['upstream_smooth'].max():.2f}\n" result_text += f" 平均值: {hist_data['upstream_smooth'].mean():.2f}\n" result_text += f" 标准差: {hist_data['upstream_smooth'].std():.2f}\n\n" result_text += "陈行下游盐度:\n" result_text += f" 最小值: {hist_data['downstream_smooth'].min():.2f}\n" result_text += f" 最大值: {hist_data['downstream_smooth'].max():.2f}\n" result_text += f" 平均值: {hist_data['downstream_smooth'].mean():.2f}\n" result_text += f" 标准差: {hist_data['downstream_smooth'].std():.2f}\n" update_result_text(result_text) except Exception as e: status_label.config(text=f"显示历史数据时出错: {str(e)}") import traceback traceback.print_exc() def on_scroll(event): xlim = ax.get_xlim() ylim = ax.get_ylim() zoom_factor = 1.1 x_data = event.xdata if event.xdata is not None else (xlim[0]+xlim[1])/2 y_data = event.ydata if event.ydata is not None else (ylim[0]+ylim[1])/2 x_rel = (x_data - xlim[0]) / (xlim[1] - xlim[0]) y_rel = (y_data - ylim[0]) / (ylim[1] - ylim[0]) if event.step > 0: new_width = (xlim[1]-xlim[0]) / zoom_factor new_height = (ylim[1]-ylim[0]) / zoom_factor x0 = x_data - x_rel * new_width y0 = y_data - y_rel * new_height ax.set_xlim([x0, x0+new_width]) ax.set_ylim([y0, y0+new_height]) else: new_width = (xlim[1]-xlim[0]) * zoom_factor new_height = (ylim[1]-ylim[0]) * zoom_factor x0 = x_data - x_rel * new_width y0 = y_data - y_rel * new_height ax.set_xlim([x0, x0+new_width]) ax.set_ylim([y0, y0+new_height]) canvas.draw_idle() def update_cursor(event): if event.inaxes == ax: canvas.get_tk_widget().config(cursor="fleur") else: canvas.get_tk_widget().config(cursor="") def reset_view(): global current_view if current_view['xlim'] is not None: # 应用保存的视图范围 ax.set_xlim(current_view['xlim']) ax.set_ylim(current_view['ylim']) # 应用紧凑布局并重绘 fig.tight_layout() canvas.draw_idle() status_label.config(text="图表视图已重置") else: status_label.config(text="没有可用的初始视图范围") root = tk.Tk() root.title(f"{prediction_mode}盐度预测系统") try: configure_gui_fonts() except Exception as e: print("字体配置异常:", e) # 恢复输入框和控制按钮 input_frame = ttk.Frame(root, padding="10") input_frame.pack(fill=tk.X) ttk.Label(input_frame, text="输入开始时间 (YYYY-MM-DD HH:MM:SS)").pack(side=tk.LEFT) entry = ttk.Entry(input_frame, width=25) entry.pack(side=tk.LEFT, padx=5) predict_button = ttk.Button(input_frame, text="预测", command=on_predict) predict_button.pack(side=tk.LEFT) status_label = ttk.Label(input_frame, text="提示: 第一次运行请勾选'强制重新训练模型'") status_label.pack(side=tk.LEFT, padx=10) control_frame = ttk.Frame(root, padding="5") control_frame.pack(fill=tk.X) retrain_var = tk.BooleanVar(value=False) ttk.Checkbutton(control_frame, text="强制重新训练模型", variable=retrain_var).pack(side=tk.LEFT) # 添加显示历史数据按钮 history_button = ttk.Button(control_frame, text="显示历史数据", command=display_history_data) history_button.pack(side=tk.LEFT, padx=5) # 添加切换数据源的按钮 switch_button = ttk.Button(control_frame, text="切换到太仓石化-陈行", command=switch_prediction_mode) switch_button.pack(side=tk.LEFT, padx=5) # # 添加查看特征重要性按钮 # feature_button = ttk.Button(control_frame, text="查看特征重要性", command=show_feature_importance) # feature_button.pack(side=tk.LEFT, padx=5) # 更新图例说明,添加盐度警戒线信息 legend_label = ttk.Label(control_frame, text="图例: 紫色=上游数据, 蓝色=下游数据, 红色=预测值, 橙色=实际值, 红色虚线=盐度警戒线(250)") legend_label.pack(side=tk.LEFT, padx=10) reset_button = ttk.Button(control_frame, text="重置视图", command=reset_view) reset_button.pack(side=tk.LEFT, padx=5) # 添加显示模型准确度的标签 metrics_frame = ttk.Frame(root, padding="5") metrics_frame.pack(fill=tk.X) model_metrics = get_model_metrics() metrics_text = "模型准确度: 未知" if not model_metrics else f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}" metrics_label = ttk.Label(metrics_frame, text=metrics_text) metrics_label.pack(side=tk.LEFT, padx=10) # 结果显示区域 result_frame = ttk.Frame(root, padding="10") result_frame.pack(fill=tk.BOTH, expand=True) # 左侧放置图表 plot_frame = ttk.Frame(result_frame, width=800, height=600) plot_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) plot_frame.pack_propagate(False) # 不允许框架根据内容调整大小 # 右侧放置文本结果 text_frame = ttk.Frame(result_frame) text_frame.pack(side=tk.RIGHT, fill=tk.Y) # 使用等宽字体显示结果 result_font = tkfont.Font(family="Courier New", size=10, weight="normal") # 添加文本框和滚动条 result_text = tk.Text(text_frame, width=50, height=25, font=result_font, wrap=tk.NONE) result_text.pack(side=tk.LEFT, fill=tk.BOTH) result_scroll = ttk.Scrollbar(text_frame, orient="vertical", command=result_text.yview) result_scroll.pack(side=tk.RIGHT, fill=tk.Y) result_text.configure(yscrollcommand=result_scroll.set) result_text.configure(state=tk.DISABLED) # 初始设为只读 # 更新结果文本的函数 def update_result_text(text): result_text.configure(state=tk.NORMAL) result_text.delete(1.0, tk.END) result_text.insert(tk.END, text) result_text.configure(state=tk.DISABLED) # 创建更高DPI的图形以获得更好的显示质量 fig, ax = plt.subplots(figsize=(10, 6), dpi=100) fig.tight_layout(pad=3.0) # 增加内边距,防止标签被截断 # 创建画布并添加到固定大小的框架 canvas = FigureCanvasTkAgg(fig, master=plot_frame) canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 添加工具栏,包含缩放、保存等功能 toolbar_frame = ttk.Frame(plot_frame) toolbar_frame.pack(side=tk.BOTTOM, fill=tk.X) toolbar = NavigationToolbar2Tk(canvas, toolbar_frame) toolbar.update() # 启用紧凑布局,并设置自动调整以使图表完全显示 def on_resize(event): fig.tight_layout() canvas.draw_idle() # 添加图表交互功能 canvas.mpl_connect('resize_event', on_resize) canvas.mpl_connect('scroll_event', on_scroll) canvas.mpl_connect('motion_notify_event', update_cursor) # 添加鼠标拖动功能 def on_press(event): if event.inaxes != ax: return canvas.get_tk_widget().config(cursor="fleur") ax._pan_start = (event.x, event.y, event.xdata, event.ydata) def on_release(event): ax._pan_start = None canvas.get_tk_widget().config(cursor="") canvas.draw_idle() def on_motion(event): if not hasattr(ax, '_pan_start') or ax._pan_start is None: return if event.inaxes != ax: return start_x, start_y, x_data, y_data = ax._pan_start dx = event.x - start_x dy = event.y - start_y # 获取当前视图 xlim = ax.get_xlim() ylim = ax.get_ylim() # 计算图表坐标系中的移动 x_scale = (xlim[1] - xlim[0]) / canvas.get_tk_widget().winfo_width() y_scale = (ylim[1] - ylim[0]) / canvas.get_tk_widget().winfo_height() # 更新视图 ax.set_xlim(xlim[0] - dx * x_scale, xlim[1] - dx * x_scale) ax.set_ylim(ylim[0] + dy * y_scale, ylim[1] + dy * y_scale) # 更新拖动起点 ax._pan_start = (event.x, event.y, event.xdata, event.ydata) canvas.draw_idle() # 连接鼠标事件 canvas.mpl_connect('button_press_event', on_press) canvas.mpl_connect('button_release_event', on_release) canvas.mpl_connect('motion_notify_event', on_motion) # 初始显示历史数据 display_history_data() root.mainloop() # 向量化构造训练样本(优化特征工程) # ------------------------------- def create_features_vectorized(df, look_back=168, forecast_horizon=1): """ 向量化构造训练样本,使用过去7天的所有原始数据来预测未来1天的下游盐度均值 """ try: # 确保数据按时间排序 df = df.sort_values('DateTime') # 获取所有数值列(排除DateTime列) numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() if 'DateTime' in numeric_columns: numeric_columns.remove('DateTime') # 初始化特征和标签列表 features = [] # x输入 targets = [] # y输出 # 使用滑动窗口创建样本 for i in range(len(df) - look_back - forecast_horizon + 1): # 获取7天的特征窗口 window = df.iloc[i:i+look_back] # 提取特征 - 使用所有原始数据 window_features = [] for col in numeric_columns: # 获取列数据并处理NaN值 col_values = window[col].fillna(method='ffill').fillna(method='bfill').values window_features.extend(col_values) # 添加时间特征 current_date = window['DateTime'].iloc[-1] window_features.extend([ current_date.month, current_date.day, current_date.weekday() ]) # 新增:增强最近时段数据的权重(最后24小时的数据权重提高) # 提取最后24小时的上游和下游盐度数据 last_24h = window.iloc[-24:] if len(last_24h) == 24: # # 上游盐度的最后24小时数据,每小时一个点 # recent_upstream = last_24h['upstream_smooth'].values # 下游盐度的最后24小时数据,每小时一个点 recent_downstream = last_24h['downstream_smooth'].values # 计算最后24小时的统计特征 recent_stats = [ # np.mean(recent_upstream), # 均值 # np.std(recent_upstream), # 标准差 np.mean(recent_downstream), # 均值 np.std(recent_downstream), # 标准差 # recent_upstream[-1] - recent_upstream[0], # 总变化 recent_downstream[-1] - recent_downstream[0], # 总变化 # np.mean(np.diff(recent_upstream)), # 平均变化率 np.mean(np.diff(recent_downstream)) # 平均变化率 ] # 添加到特征中,并给这些特征3倍的权重(重复添加) window_features.extend(recent_stats) window_features.extend(recent_stats) # 重复一次增加权重 window_features.extend(recent_stats) # 再次重复 # 获取目标值(未来1天的下游盐度均值) next_day = df.iloc[i+look_back:i+look_back+24] # 获取未来24小时的数据 # 处理目标值中的NaN target_values = next_day['downstream_smooth'].fillna(method='ffill').fillna(method='bfill').values target = np.mean(target_values) # 检查特征和目标值是否有效 if not np.any(np.isnan(window_features)) and not np.isnan(target) and not np.isinf(target): features.append(window_features) targets.append(target) if not features: print("警告: 未能生成任何有效特征") return np.array([]), np.array([]) # 转换为numpy数组 X = np.array(features) y = np.array(targets) print(f"成功生成特征矩阵,形状: {X.shape}") return X, y except Exception as e: print(f"特征创建异常: {e}") return np.array([]), np.array([]) def generate_prediction_features(df, current_date, look_back=168): """ 为预测生成特征,使用与create_features_vectorized相同的特征生成逻辑 """ try: # 确保数据按时间排序 df = df.sort_values('DateTime') # 获取所有数值列(排除DateTime列) numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() if 'DateTime' in numeric_columns: numeric_columns.remove('DateTime') # 找到当前日期在数据中的位置 current_idx = df[df['DateTime'] <= current_date].index[-1] # 获取过去168小时(7天)的数据窗口 if current_idx < look_back: print(f"数据不足,需要{look_back}小时的数据,但只有{current_idx+1}小时") return None window = df.iloc[current_idx-look_back+1:current_idx+1] # 提取特征 - 使用所有原始数据 features = [] for col in numeric_columns: # 直接使用原始数据作为特征 features.extend(window[col].values) # 添加时间特征 features.extend([ current_date.month, current_date.day, current_date.weekday() ]) # 新增:增强最近时段数据的权重(最后24小时的数据权重提高) # 提取最后24小时的数据 last_24h = window.iloc[-24:] if len(last_24h) == 24: # 上游盐度的最后24小时数据,每小时一个点 recent_upstream = last_24h['upstream_smooth'].values # 下游盐度的最后24小时数据,每小时一个点 recent_downstream = last_24h['downstream_smooth'].values # 计算最后24小时的统计特征 recent_stats = [ np.mean(recent_upstream), # 均值 np.std(recent_upstream), # 标准差 np.mean(recent_downstream), # 均值 np.std(recent_downstream), # 标准差 recent_upstream[-1] - recent_upstream[0], # 总变化 recent_downstream[-1] - recent_downstream[0], # 总变化 np.mean(np.diff(recent_upstream)), # 平均变化率 np.mean(np.diff(recent_downstream)) # 平均变化率 ] # 添加到特征中,并给这些特征3倍的权重(重复添加) features.extend(recent_stats) features.extend(recent_stats) # 重复一次增加权重 features.extend(recent_stats) # 再次重复 return np.array(features) except Exception as e: print(f"预测特征生成异常: {e}") return None # 主函数 def main(): global df, current_df, qinglong_df, taicang_df # 加载两个数据集 qinglong_df, taicang_df = load_both_datasets() current_df = qinglong_df # 默认使用青龙港-陈行数据集 if current_df is not None: df = current_df # 设置当前使用的数据集 run_gui() else: print("数据加载失败,无法运行预测。") # 在程序入口处调用main函数 if __name__ == "__main__": main()